Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
Vì x2 ≥ 0 ∀ x
=> -5x2 ≤ 0
=> -5x2 + 9 ≤ 9
Để A = -5x2 + 9 nhận giá trị lớn nhất thì -5x2 + 9 = 9
=> A = 9
Vì ( 3x - 2 )2 ≥ 0
=> 5 - ( 3x - 2 )2 ≤ 5
Để B = 5 - ( 3x - 2 )2 nhận giá trị lớn nhất thì 5 - ( 3x - 2 )2 = 5
=> B = 5
Để D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}\)nhận giá trị lớn nhất thì ( 2 - x )2 + 1 nhận giá trị nhỏ nhất
Mà ( 2 - x )2 + 1 ≠ 0
=> ( 2 - x )2 + 1 = 1
=> D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}=\frac{\text{2022}}{\text{1}}\)= 2022
Ta có \(-5x^2\le0\Leftrightarrow-5x^2+9\le9\)
=> Max A = 9
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy Max A = 9 <=> x = 0
b) Ta có \(-\left(3x-2\right)^2\le0\forall x\Rightarrow5-\left(3x-2\right)^2\le5\)
=> Max B = 5
Dấu "=" xảy ra <=> 3x - 2 = 0 <=> x = 2/3
Vậy Max = 5 <=> x = 2/3
c) Ta có \(2x^2+3\ge3\forall x\Rightarrow\frac{1}{2x^2+3}\le\frac{1}{3}\)
=> Max C = 1/3
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy Max C = 1/3 <=> x = 0
d) Ta có \(\left(2-x\right)^2+1\ge1\forall x\Leftrightarrow\frac{2022}{\left(2-x\right)^2+1}\le2022\)
=> Max D = 2022
Dấu "=" xảy ra <=> 2 - x = 0 => x = 2
Vậy Max D = 2022 <=> x = 2
a,
vì \(\left|2x-1\right|\ge0\Rightarrow A=5-\left|2x-1\right|\le5\)
A đạt giá trị lớn nhất <=> A=5-|2x-1|=5
<=>2x-1=0
<=>2x=1
<=>x=1/2
vậy A đạt giá trị lớn nhất là 5 khi x=1/2
b) Vì \(-|3x+2|\le0;\forall\text{}x\)
\(\Rightarrow-|3x+2|+11\le0+11;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow|3x+2|=0\)
\(\Leftrightarrow x=\frac{-2}{3}\)
Vậy MAX B =11 \(\Leftrightarrow x=\frac{-2}{3}\)
a) Vì |x - 7| \(\ge\) 0 với mọi x => - |x - 7| \(\le\) 0
=> I = 1,2 - |x - 7| \(\le\) 1,2
=> Max I = 1,2 khi x - 7 = 0 => x = 7
b) - |1,8 - 2x| \(\le\) 0 với mọi x => G = - |1,8 - 2x| - 9 \(\le\) -9
Vậy Mã G = -9 khi 1,8 - 2x = 0 <=> x = 1,8 : 2 = 0,9