Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)
\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)
\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)
mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)
\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)
\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)
\(\left|x+1,5\right|\ge0\forall x\)
Dấu " = " xảy ra khi
| x + 1,5 | = 0
x = -1,5
Vậy MinA = 0 <=> x = -1,5
b)
\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)
Dấu " = " xảy ra khi
| x - 2 | = 0
x = 2
Vậy MinA = \(\frac{9}{10}\)<=> x = 2
\(-\left|2x-1\right|\le0\forall x\)
Dấu " = " xảy ra khi :
- | 2x - 1 | = 0
=> x = \(\frac{1}{2}\)
Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)
b)
\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)
Dấu " = " xảy ra khi :
- | 5x - 3 | = 0
=> x = \(\frac{3}{5}\)
Vậy MaxB = 4 <=> x = \(\frac{3}{5}\)
Study well
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
\(C=-\left|5x+1\right|-4\le-4\)
Dấu ''='' xảy ra khi x = -1/5
Vậy GTLN của C bằng -4 tại x = -1/5
\(C=-\left|5x+1\right|-4\)
Vì \(-\left|5x+1\right|\le0\forall x\)
\(\Rightarrow-\left|5x+1\right|-4\le-4\forall x\)
\(\Rightarrow C_{max}=-4\Leftrightarrow-\left|5x+1\right|=0\Leftrightarrow x=-\frac{1}{5}\)