K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Sửa đề:

A=/x+5/+10

Ta có: /x+5/>= 0 với mọi x>=0

=> A=/x+5/+10 >= 10

=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5

Vậy...

29 tháng 1 2019

\(\text{a) }A=\left|x+5\right|+10\)

\(\text{Vì }\left|x+5\right|\ge0\forall x\)

\(\Rightarrow A=\left|x+5\right|+10\ge10\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|x+5\right|=0\)

\(\Rightarrow x=-5\)

\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)

\(\text{b) }\left|3-x\right|+5\)

\(\text{Vì }\left|3-x\right|\ge0\forall x\)

\(\Rightarrow\left|3-x\right|+5\ge5\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|3-x\right|=0\)

\(\Rightarrow x=3\)

\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)

\(\text{d) }D=\left(x+2\right)^2+15\)

\(\text{Vì ( x + 2 )}^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+15\ge15\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

8 tháng 1 2019

Khó thế!!!

8 tháng 1 2019

\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)

Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)

Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)

\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)

\(=\left|4-2x\right|+y^2-5\)

Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)

\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )

28 tháng 7 2018

=2x^2+5 >=5

min=5 <=> x=0

17 tháng 2 2020

\(N=\left|x+2020\right|-5\)

Ta có : \(\left|x+2020\right|\ge0\Rightarrow N\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x+2020\right|=0\Leftrightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy \(N_{min}=-5\Leftrightarrow x=-2020\)