K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

\(N=x^2+5y^2-4xy+6x-14y+15=x^2-4xy+4y^2+6x-12y+9+y^2-2y+1+5\)

\(=\left(x^2-4xy+4y^2\right)+\left(6x-12y\right)+9+\left(y^2-2y+1\right)+5\)

\(=\left[x^2-2.x.2y+\left(2y\right)^2\right]+6\left(x-2y\right)+9+\left(y^2-2.y.1+1^2\right)+5\)

\(=\left(x-2y\right)^2+6\left(x-2y\right)+9+\left(y-1\right)^2+5\)

\(=\left[\left(x-2y\right)^2+6\left(x-2y\right)+9\right]+\left(y-1\right)^2+5\)

\(=\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y-1\right)^2+5=\left(x-2y+3\right)^2+\left(y-1\right)^2+5\ge5\)

\(\Rightarrow GTNN\)của biểu thức N là 5.

Dấu\("="\)xảy ra\(\Leftrightarrow x-2y+3=0\)\(y-1=0\Leftrightarrow x-2y=-3\)\(y=1\).

\(\Leftrightarrow x-2.1=-3\)\(y=1\Leftrightarrow x=-3+2=-1\)\(y=1\).

Vậy\(GTNN\)của biểu thức N là 5 tại\(x=-1\)\(y=1\).

13 tháng 12 2019

\(N = x^2+5y^2-4xy+6x-14y+15\)

\(N= [ ( x^2 - 4xy + 4y^2) + ( 6x - 12y) + 9 ]\)\(+ ( y^2 - 2y + 1 ) + 5\)\(N = [( x - 2y )^2 + 6( x - 2y ) + 9 ] + \)\(( y - 1 )^2 + 5\)\(N = ( x - 2y + 3 )^2 + ( y - 1 )^2 +5\)\(\ge\)\(5\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\)\(x - 2y + 3 = 0 \) \(và \) \(y - 1 = 0\)

\(\Rightarrow\)\(x - 2y + 3 = 0 \) \(và\) \(y = 1\)

\(\Rightarrow\)\(x = - 1\) \(và \) \(y = 1\)

\(Min N = 5 \)\(\Leftrightarrow\)\(x = - 1\) \(và \) \(y = 1\)

25 tháng 12 2018

\(A=13x^2+y^2+4xy-2y-16x+2015\)

\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)

\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)

\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)

Đến đây bạn tự làm nốt nhé~

không làm được thì ib

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

31 tháng 10 2017

a) \(3x^2-3y^2-12x+12y\)

\(=\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-3y-12\right)\)

\(=\left(x-y\right).3.\left(x-y-4\right)\)

b) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

28 tháng 11 2017

c)    \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\) 

\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

30 tháng 6 2019

\(A=-x^2-5y^2+2xy-4x+20y+13\)

\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)

\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)

\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)

\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)

\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)

\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

30 tháng 6 2019

\(B=-7x^2-y^2+4xy+16x-2y+17.\)

\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)

\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)

\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)

\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)

\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

25 tháng 9 2021

Mình đang cần gấp