K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

bt \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2+b^2}{2ca}\)

19 tháng 12 2017

điều kiện: \(x\ne\pm3\)

A = \(\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{4}{x-3}\)

Với x = 1 thì A = \(\frac{4}{1-3}=-2\)

19 tháng 12 2017

a, ĐKXĐ : x+3 khác 0 ; x-3 khác 0 ; x^2-9 khác 0 <=> x khác -3 và 3

b, A = 3.(x-3)+x+3+18/(x-3).(x+3) = 4x+12/(x+3).(x-3) = 4.(x+3)/(x+3).(x-3) = 4/x-3

c, Khi x =1 thì A = 4/1-3 = -2

k mk nha

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

thông cảm mình copy k hết đc