K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Lời giải:

$B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}$
Ta thấy: $x^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^2+3\geq 3$

$\Rightarrow B=1+\frac{12}{x^2+3}\leq 1+\frac{12}{3}=5$

Vậy $B_{\max}=5$

Giá trị này đạt tại $x^2=0\Leftrightarrow x=0$

hình như bạn cho đề sai

18 tháng 10 2016

đúng đè mà!

12 tháng 8 2016

Để X^2+15/ X^2 + 3 đạt GTLN

Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất

\(x^2\ge0\Leftrightarrow x^2+3\ge0+3=3\)

=>GTNN của mẫu là 3 khi đó x2=0 <=>x=0

=>Giá trị của tử khi x=0  là \(0^2+15=15\)

=>GTLN của biểu thức là:\(\frac{15}{3}=5\Leftrightarrow x=0\)

 

 
12 tháng 8 2016

\(\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có

\(x^2\ge0\) với mọi x

\(\Rightarrow x^2+3\ge3>0\)

\(\Rightarrow\frac{1}{x^2+3}\ge\frac{1}{3}\)

\(\Rightarrow\frac{12}{x^2+3}\ge4\)

\(\Rightarrow1+\frac{12}{x^2+1}\ge5\)

Dấu " = " xảy ra khi x=0

Vậy biểu thức đạt giá trị nhỏ nhất là 5 khi x=0

15 tháng 2 2016

A= |x+1|+5

Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5

 Dấu = xảy ra <=> x+1=0=> x=-1

Vậy A đạt GTNN =5 <=> x=-1

Còn câu b bạn tự làm

ủng hộ nha

15 tháng 2 2016

dũng làm đúc rùi đó bn

1 tháng 11 2014

|x+1|> hoặc = 0 với mọi x

suy ra |x+1|+5 > hoặc = 5 với mọi x

suy ra Amin=5 khi |x+1|=0

                        suy ra x+1=0

                       suy ra x = -1

vậy gtnn của A là 5 khi x=-1

bn nên sử dụng dấu suy ra và dấu lớn hơn hoặc vì mình ko biết đánh dấu . câu b bn làm tương tự vì x^2 cũng lớn hơn hoặc bằng 0

 

 

20 tháng 3 2019

Ta có  : \(B=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}.\)Do \(x^2\ge0\)với mọi x nên \(x^2+3\ge3\Rightarrow\frac{12}{x^2+3}\le4\Rightarrow\frac{12}{x^2+3}+1\le4+1\)hay \(B\le5.\)Vậy \(maxB=37\)đạt được khi \(x=0.\)

20 tháng 10 2015

B=(x2+3+12)/(x2+3)=1+12/(x2+3)

B lớn nhất khi x=0 => Bmax= 1+12/3=5

27 tháng 3 2019

dell hiểu

24 tháng 3 2019

\(A=|x+1|+5\ge5\forall x\)

=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)

\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2+3\ge3\forall x\)

Min x2 + 3 = 3 tại x = 0

Khi đó: Max B = 1+ 12/3 = 5 tại x = 0

=.= hk tốt!!

|x+1 lớn hơn hoặc bằng 0 

=> |x+1|+5 lớn hơn hoặc bằng 5

Dấu = xảy ra khi x+1=0 <=> x=-1

Vậy Min A = 5 khi x=-1 

31 tháng 3 2019

a) Ta có : \(|x-7|\ge0\)

\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)

Mà \(A=0\)

\(\Leftrightarrow5|x-7|=0\)

\(\Leftrightarrow x=7\left(2\right)\)

Từ (1) và (2) => max A = 124

b) 

+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)

\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)

Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )

Còn lại bạn tự làm nha .

Cuối cùng ra \(_{max}B=\frac{7}{6}\)