Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản
ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1
ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)
\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)
do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)
\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)
dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)
\(T=x^2-xy+y^2\)
\(=\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}\)
\(=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\)
\(\ge\frac{3y^2}{4}\)
\(\ge0\)
Dấu "=" xảy ra khi x=y=0
câu a
x phải dương và x khác 4
câu b
x = 9 P = 4
x = 4 P không xác định vì mẫu số= 0
Câu c
P ≤ 0 thì | P| > P
hết giờ rôi bạn hiền
Đặt Q = \(\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\) = \(\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
Q = \(\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}\) = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}\) = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2=}2xy\)
\(\Leftrightarrow\)Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}\)
\(\Leftrightarrow\)Q = \(\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}\)= \(1\)
Đẳng thức xảy ra : \(\Leftrightarrow\hept{\begin{cases}x,y>0\\x=y\Rightarrow\\xy=4\end{cases}x=y=2}\)
Vậy giá trị nhỏ nhất của Q là 1 \(\Leftrightarrow x=y=2\)
CMR: \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\)
đặt \(a=2+\sqrt{3}\); \(b=2-\sqrt{3}\)
suy ra: \(a+b=2+\sqrt{3}+2-\sqrt{3}=4\)
và : \(ab=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
Ta có: \(a^{2021}+b^{2021}=\left(a+b\right)\left(a^{2020}-a^{2019}b+a^{2018}b^2-...+a^{1010}b^{1010}-...-ab^{2019}+b^{2020}\right)\)
\(=\left(a+b\right)\left(a^{2020}-a^{2018}ab+a^{2016}a^2b^2-...+a^{1010}b^{1010}-...-abb^{2018}+b^{2020}\right)\)
Vì \(a+b=4\);\(ab=1\)nên:
\(a^{2021}+b^{2021}=4\left(a^{2020}-a^{2018}+a^{2016}-...+1-...-b^{2018}+b^{2020}\right)\)
\(=4\left(a^{2020}+b^{2020}-\left(a^{2018}+b^{2018}\right)+a^{2016}+b^{2016}-...+1\right)\)
\(=4\left(\left(a+b\right)^{2020}-2\left(ab\right)^{1010}-\left(a+b\right)^{2018}+2\left(ab\right)^{1009}+\left(a+b\right)^{2016}-2\left(ab\right)^{1008}-...+1\right)\)\(=4\left(4^{2020}-2-4^{2018}+2+4^{2016}-2-...+1\right)\)
\(=4S\)(Với \(S\inℕ^∗\))
suy ra \(a^{2021}+b^{2021}=4S⋮4\)
Vậy \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\left(đpcm\right)\)
Ta có: \(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+\frac{1}{z-1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng BĐT Bunhiacôpski ta có:
\(\left(1+x+1+y+1+z\right)\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\ge\left(1+1+1\right)^2=3^2=9\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}=\frac{9}{4}\)
\(\Rightarrow A\le3-\frac{9}{4}=\frac{12}{4}-\frac{9}{4}=\frac{3}{4}\)
\(\Rightarrow Max_A=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Thay \(x+y+z=1\)vào biểu thức
\(\Rightarrow P=\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{y}{x+2y+z}=\frac{y}{x+y+y+z}\le\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{z}{x+y+2z}=\frac{z}{x+z+y+z}\le\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow VT\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)\(+\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{y}{4\left(x+y\right)}+\frac{y}{4\left(y+z\right)}+\frac{z}{4\left(x+z\right)}\)\(+\frac{z}{4\left(y+z\right)}\)
\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{y}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{z}{4\left(x+z\right)}+\frac{y}{4\left(y+z\right)}\)\(+\frac{z}{4\left(y+z\right)}\)
\(\Rightarrow VT\le\frac{x+y}{4\left(x+y\right)}+\frac{x+z}{4\left(x+z\right)}+\frac{y+z}{4\left(y+z\right)}\)
\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow P\le\frac{3}{4}\)
Vậy \(P_{max}=\frac{3}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
\(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{5\sqrt{x}-2}{x-4}\)
\(Q=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(Q=\frac{x-3\sqrt{x}-2-5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(Q=\frac{x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)
ủa sao không thấy gọn ta