K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Áp dụng bất đẳng thức Cauchy , ta có 

\(M=\frac{x}{\left(x+2018\right)^2}\le\frac{x}{\left(2.\sqrt{a.2018}\right)^2}=\frac{x}{4.x.2018}=\frac{1}{8072}\)

Đẳng thức xảy ra <=> x = 2018 

12 tháng 5 2018

có thể rõ hơn 1 chút hông bạn mk chưa hiểu lắm

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

26 tháng 12 2018

đề bài sai r bn ơi phải là +10 chứ ko phải +8 đâu nhá

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

13 tháng 9 2019

Ta đặt t = \(\frac{1}{2004y}\)

Bài toán được đưa về tìm x để t bé nhất :
 Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\) ( 1 )

Ta thấy : Theo bất đẳng thức Côsi cho 2 số dương ta có :

\(x^2+2004^2\ge2.2004.x\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\) ( 2 )

Dấu " = " xảy ra khi x = 2004 

Từ ( 1 ) và ( 2 ) \(\Rightarrow t\ge4\Rightarrow\) giá trị bé nhất của t = 4 khi x = 2004 

Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\) . Khi \(x=2004\)

Chúc bạn học tốt !!!

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

21 tháng 2 2021

A xác định khi 5x-10 ≠0 <=> X ≠ 2b) A = x²-4x+4/5x-10= (x-2)²/5(x-2)= x-2/5c) x= -2018<=> A = -2018-2/5= -2020/5 = -404

Chúc bạn học tốt

a) ĐKXĐ: \(x\ne2\)

b) Ta có: \(A=\dfrac{x^2-4x+4}{5x-10}\)

\(=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}\)

\(=\dfrac{x-2}{5}\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs