Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M=\frac{8x+12}{x^2+4}$
$\Rightarrow M(x^2+4)=8x+12$
$\Rightarrow Mx^2-8x+(4M-12)=0(*)$
Vì $M$ tồn tại nên dấu "=" của PT luôn xảy ra, tức là PT $(*)$ luôn có nghiệm.
$\Rightarrow \Delta'=16-M(4M-12)\geq 0$
$\Leftrightarrow 4-M(M-3)\geq 0$
$\Leftrightarrow M^2+3M-4\leq 0$
$\Leftrightarrow (M-1)(M+4)\leq 0$
$\Leftrightarrow -4\leq M\leq 1$
Vậy $M_{\min}=-4; M_{\max}=1$
\(P=\frac{8x+12}{x^2+4}=\frac{4x^2+16-4x^2+8x-4}{x^2+4}\)
\(=4-\frac{\left(2x-2\right)^2}{x^2+4}\le4\)
Vậy GTLN là 4
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\)
Dấu "=" <=> x=0
+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)
\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1
Ta co : 8x+12/x^2+4
Xet tu , ta co :
8x+12
=x^4+8x+16-x^4-4
=(x^2+4)^2-(x^4+4)
Thay vao bieu thuc tren ta co :
[(x^2+4)^2-(x^4+4)]/(x^2+4)
=(x^2+4)^2/(x^2+4)-(x^4+4)/(x^2+4)
=1-(x^4+4)/(x^2+4)
Ma : -(x^4+4)/(x^2+4) < 0
=> 1-(x^4+4)/(x^2+4) < 1
Hay : Max cua bieu thuc la 1
thien ty tfbos, mình nghĩ là bạn sai rồi