\(^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

\(E=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxE=6\Leftrightarrow x=-1\)

7 tháng 11 2021

\(=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

dấu "=" xảy ra \(\Leftrightarrow x=-1\)

26 tháng 6 2017

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)

26 tháng 6 2017

a)

\(A=x^2+y^2-x+6y+10.\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)

b)

\(B=2x-2x^2-5\)

\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 6 2017

Ta có :

5 - 2x - x2 

= -(x2 + 2x - 5)

= -(x2 + 2x + 1 - 6)

= -(x2 + 2x + 1) + 6

= -(x + 1)2 + 6

Xét biểu thức ta thấy : \(-\left(x+1\right)^2\le0\)

=> \(-\left(x+1\right)^2\le6\)

=> \(Min=6\)

<=> (x + 1)2 = 0

<=> x = -1 

24 tháng 6 2017

\(5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

Vậy GTLN của biểu thức là 6 đạt được khi x = -1

24 tháng 6 2017

\(5-2x-x^2=-x^2-2x+5\)

\(=-\left(x^2+2x-5\right)\)

\(=-\left(x^2+2x.1+1\right)+6\)

\(=6-\left(x+1\right)^2\le6\)

Max = 6 khi x+1=0   => x=-1

19 tháng 9 2019

a) 

\(A=2x^2-6x\)

\(=\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{3\sqrt{2}}{2}+\frac{9}{2}-\frac{9}{2}\)

\(=\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)

Vì \(\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2};\forall x\)

Hay \(A\ge\frac{-9}{2};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x\sqrt{2}-\frac{3\sqrt{2}}{2}=0\)

                         \(\Leftrightarrow x=\frac{3}{2}\)

Vậy MIN \(A=\frac{-9}{2}\)\(\Leftrightarrow x=\frac{3}{2}\)

( xin lỗi bro mình thích làm căn )

Các bài khác làm nốt đi

20 tháng 9 2019

a) \(2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Vậy GTLN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

b)

1. \(x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy GTNN của biểu thức là \(\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

2. \(2x-2x^2-5=-2\left(x^2-x+\frac{5}{2}\right)\)

\(=-2\left(x^2-x+\frac{1}{4}+\frac{9}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{-9}{2}\)

Vậy GTNN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

19 tháng 10 2018

\(P\left(x\right)=-x^2+2x+5=-\left(x^2-2x-5\right)\)

           \(=-\left(x^2-2.x.1+1^2-6\right)=-\left(x-1\right)^2+6=6-\left(x-1\right)^2\)

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow6-\left(x-1\right)^2\le6\)

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy P(x)max = 6 khi và chỉ khi x = 1

19 tháng 10 2018

Gọi biểu thức trên là A.Ta có: \(A=-x^2+2x+5\)

\(=-x^2+2x-1+6\)

\(=-\left(x^2-2x+1\right)+6\)

\(=-\left(x-1\right)^2+6\)

Do \(-\left(x-1\right)^2\le0\forall x\Rightarrow A=-\left(x-1\right)^2+6\le6\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(A_{max}=6\Leftrightarrow x=1\)

17 tháng 7 2018

\(E=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\)

vậy GTLN của E là 21 khi \(x=-4\)

\(F=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x-2\right)^2+5\le5\)

vay.............................................