\(A=5+\sqrt{3+2x-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

24 tháng 10 2017

\(M=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)

\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)

\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)

Để PT theo nghiệm x có nghiệm thì

\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)

\(\Leftrightarrow M^2\le25\)

\(\Leftrightarrow-5\le M\le5\)

24 tháng 10 2017

Max đúng

Min sai rồi

DK \(x\ge-\sqrt{5}\)

=> M \(\ge-2\sqrt{5}\)

4 tháng 9 2019

1.

\(A=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4+\sqrt{12}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2.

\(y=\sqrt{16-x^2}\le4\)

Dau '=' xay ra khi \(x=\sqrt{12}\)

3.

\(y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)

Dau '=' xay ra khi \(x=1\)

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

25 tháng 7 2017

a) ĐK:  \(x\ge8\)

Ta có  \(A=\sqrt{x+1}-\sqrt{x-8}=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\)

Mà  \(\sqrt{x+1}+\sqrt{x-8}\ge\sqrt{8+1}+\sqrt{8-8}=3\)

Nên  \(A\le\frac{9}{3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=8\)

23 tháng 7 2017

b) ĐK:  \(3\le x\le5\)

Theo BĐT Bunhiakovski

\(B^2=\left(1.\sqrt{x-3}+1.\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-3+5-x\right)=4\)

\(\Rightarrow B\le2\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\frac{1}{\sqrt{x-3}}=\frac{1}{\sqrt{5-x}}\)  \(\Leftrightarrow\)  x = 4