Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0,5-\left|3,4-x\right|\)
\(\left|3,4-x\right|\ge0\forall x\)
\(\Rightarrow0,5-\left|3,4-x\right|\le0,5\)
Dấu "=" xảy ra khi:
\(\left|3,4-x\right|=0\Rightarrow3,4-x=0\Rightarrow x=3,4\)
\(\Rightarrow MAX_A=0,5\) khi \(\) \(x=3,4\)
\(B=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\)
\(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi:
\(\left|x-\dfrac{1}{2}\right|=0\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(\Rightarrow MIN_B=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
a, \(-\left|3,4-x\right|\le0\Rightarrow A=0,5-\left|3,4-x\right|\le0,5\)
Dấu " = " khi \(-\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy \(MAX_A=0,5\) khi x = 3,4
b, \(\left|x-\dfrac{1}{2}\right|\ge0\Rightarrow B=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left|x-\dfrac{1}{2}\right|=0\Rightarrow x=\dfrac{1}{2}\)
Vậy \(MIN_B=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
a) Ta có: \(2^{195}=\left(2^3\right)^{65}=8^{65}\)
\(3^{130}=\left(3^2\right)^{65}=9^{65}\)
Vì \(8^{65}< 9^{65}\Rightarrow2^{195}< 3^{130}\)
b) Vì \(\left|3,4-x\right|\ge0\forall x\)
\(\Rightarrow-\left|3,4-x\right|\le0\forall x\)
\(\Rightarrow0,5-\left|3,4-x\right|\le0,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=3,4\)
Vậy \(MAX_A=0,5\Leftrightarrow x=3,4\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)
Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)
2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)
Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)
1.
\(A=\left|x-0,4\right|+9\)
Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)
Vậy GTNN của A là 9 khi x = 0,4
2.
\(B=\frac{1}{8}-\left|x+3\right|\)
Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)
Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3