\(\dfrac{x+1}{\left|x\right|}\) ( với x thuộc Z và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

A đạt giá trị lớn nhất khi |x| nhỏ nhất

Vì |x| luôn là số dương nên ta bỏ dấu giá trị tuyệt đối. Ta được:

\(A=\dfrac{x+1}{x}=\dfrac{x}{x}+\dfrac{1}{x}=1+\dfrac{1}{x}\ge2\) (Vì \(1+\dfrac{1}{x}\) luôn lớn hơn 1. Nên suy ra \(1+\dfrac{1}{x}\ge2\) )

\(\Rightarrow\dfrac{1}{x}=2-1=1\Rightarrow x=1\) (*)

Thế (*) vào biểu thức A, ta có:

\(A_{max}=\dfrac{x+1}{\left|x\right|}=\dfrac{1+1}{\left|1\right|}=\dfrac{2}{\left|1\right|}=2\)

Vậy giá trị lớn nhất của biểu thức A = 2 khi x = 1 (*)

7 tháng 4 2018

Nhã Doanh, Phạm Nguyễn Tất Đạt, Akai Haruma, nguyen thi vang, Nguyễn Thị Ngọc Thơ, kuroba kaito, Mashiro Shiina, Nguyễn Phạm Thanh Nga, lê thị hương giang, Aki Tsuki, Mến Vũ, tth, Kien Nguyen, Neet, Nguyễn Huy Tú, Ace Legona, soyeon_Tiểubàng giải, Nguyễn Thanh Hằng, Phương An, Võ Đông Anh Tuấn, Trần Việt Linh, Hoàng Lê Bảo Ngọc,...

2 tháng 5 2018

Ta có : 

\(x-y-z=0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)

Lại có : 

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\) ( hình như cái cuối là dấu "+" ) 

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay \(x-z=y\)\(;\)\(y-x=-z\) và \(z+y=x\) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được : 

\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(B=\frac{-xyz}{xyz}\)

\(B=-1\)

Vậy \(B=-1\)

Chúc bạn học tốt ~ 

10 tháng 4 2020

jiuhbvhg

11 tháng 2 2018

1. \(A=2x^2-5x-5\)

* Tại \(x=-2\) giá trị của biểu thức là :

\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)

\(A=8-\left(-10\right)-5=13\)

*Tại \(x=\dfrac{1}{2}\)

\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)

\(A=-7\)

11 tháng 2 2018

Câu 3:

a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)

..........................\(\Leftrightarrow x=3\)

Vậy MIN A = 9 \(\Leftrightarrow x=3\)

P/s: câu b coi lại đề

c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)

Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy .............................

Câu 5:

Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)

Để A nguyên thì \(2⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do đó:

\(x-3=-2\Rightarrow x=1\)

\(x-3=-1\Rightarrow x=2\)

\(x-3=1\Rightarrow x=4\)

\(x-3=2\Rightarrow x=5\)

Vậy .....................

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

3 tháng 8 2017

Ta có : từ x - y - z =0

\(\Rightarrow x-z=y\) ; \(-z=y-x\) ; \(y+z=x\)

Lại có \(B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)

\(\Rightarrow B=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{y+z}{z}\)

thay các hằng đẳng thức vừa tìm được vào B

\(\Rightarrow B=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)

vậy B = -1

tik mik nha !!!

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

24 tháng 4 2016

=> x-z=y  ;  y-x=-z  ;  z+y=x

=> A=(-xyz)/(xyz)= -1

13 tháng 7 2017

\(P=\dfrac{1000}{100-x}\)

\(P_{MAX}\Rightarrow P\in Z^+\)

\(\Rightarrow100-x=1\)

\(\Rightarrow x=100-1=99\)

\(\Rightarrow P_{MAX}=\dfrac{1000}{100-99}=1000\)

\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+.....+\dfrac{1}{50.56}\)

\(A=\dfrac{1}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+.....+\dfrac{1}{50}-\dfrac{1}{56}\right)\)

\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)=\dfrac{1}{6}.\dfrac{3}{28}=\dfrac{1}{56}\)

\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)

\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-5\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)

\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}+\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{1}{12}-\dfrac{1}{64}\right)=5.\dfrac{13}{192}=\dfrac{65}{192}\)

\(\dfrac{A}{B}=\dfrac{1}{\dfrac{56}{\dfrac{65}{192}}}=\dfrac{24}{455}\)

\(\dfrac{1}{8}=\dfrac{3}{24}\)

\(\Rightarrow\dfrac{A}{B}< \dfrac{1}{8}\rightarrowđpcm\)

23 tháng 12 2017

Ta có: \(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{y+z-x}{x}=\frac{x+y-z+x-y+z+y+z-x}{z+y+x}=\frac{x+y+z}{x+y+z}=1\)

=> \(\frac{x+y-z}{z}=1\) <=> x+y-z=z <=> x+y=2z

Tương tự: \(\frac{x-y+z}{y}=1=>x+z=2y\)

Và \(\frac{y+z-x}{x}=1=>y+z=2x\)

=> \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{\left(2z\right)\left(2x\right)\left(2y\right)}{xyz}=\frac{8xyz}{xyz}=8\)

Đáp số: A = 8