Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)
\(B=-4x^2-5y^2+8xy+10y+12\)
\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)
\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)
\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)
=>x=y=5
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)
\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)
Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$
$=(x^2-2xy+y^2)+3y^2-2x-10y+3$
$=(x-y)^2-2(x-y)+3y^2-12y+3$
$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$
$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$
$\Rightarrow A\leq 10$
Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
1) \(a^2+\frac{1}{a^2}=14\Leftrightarrow a^2+\frac{1}{a^2}+2a.\frac{1}{a}=16\Leftrightarrow\left(a+\frac{1}{a}\right)^2=16\Rightarrow a+\frac{1}{a}=4\)
\(\Rightarrow\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a}+a+\frac{1}{a^3}=a^3+4+\frac{1}{a^3}=4.14=56\)
\(\Rightarrow a^3+\frac{1}{a^3}=52\)
Ta có : \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=a^5+4+\frac{1}{a^5}=14.52\)
\(\Rightarrow a^5+\frac{1}{a^5}=14.52-4=724\)
2) \(A=2xy-x^2-4y^2+2x+10y-2000\)
\(=\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)+\left(-3y^2+12y-12\right)-1988\)
\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)-1987\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-1987\le-1987\forall x;y\) có GTLN là 2013
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(A_{max}=-1987\) tại \(x=3;y=2\)
1. \(A=2x^2-6x-2xy+y^2+10\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)
Vậy minA = 1 \(\Leftrightarrow x=y=3\)
2. \(A=5+2xy+14y-x^2-5y^2-2x\)
\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)
\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Vì \(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)
\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10
⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1
⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1
Vì (x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y
⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1
Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3
Vậy minA = 1 ⇔x=y=3⇔x=y=3
2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x
⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15
⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15
Vì {(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y
⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15
Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32
Vậy maxA = 15 ⇔{x=12y=32