K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

14 tháng 10 2016

Bằng 4 nha bạn :)

14 tháng 10 2016

A = (2x)2 - 4x +1 +4 = (2x-1)2 +4

GTNN A = 4

(hic,đăng 5h rùi mà k ai giúp ,đơn giản k, dễ hiu k, bn hiền)

31 tháng 8 2019

Ta có: A = 4x2 + y2 + 4x - 4y - 3 = (4x2 + 4x + 1) + (y2 - 4y + 4) - 10 = (2x + 1)2 + (y - 2)2 - 10

Ta luôn có: (2x + 1)2 \(\ge\)\(\forall\)x

    (y - 2)2 \(\ge\)\(\forall\)y

=> (2x + 1)2 + (y - 2)2 - 10 \(\ge\) -10 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=2\end{cases}}\)

Vậy MinA = -10 <=> x = -1/2 và y = 2

B = x2 + 4y2 - 4x + 4y + 3 = (x2 - 4x + 4) + (4y2 + 4y + 1) - 2 = (x - 2)2 + (2y + 1)2 - 2

còn lại tương tự

14 tháng 2 2018

Bài này hình như chỉ tìm đc lớn nhất thôi

14 tháng 3 2018

\(Q=x^2+2y^2+4x+6y+1\)

\(Q=\left(x^2+4x+4\right)+2\left(y^2+3y+\frac{9}{4}\right)-\frac{15}{2}\)

\(Q=\left(x+2\right)^2+2\left(y+\frac{3}{2}\right)^2-\frac{15}{2}\ge-\frac{15}{2}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=-2\\y=-\frac{3}{2}\end{cases}}\)

\(A=4x^2+4x+9\)

\(A=4\left(x^2+x+\dfrac{9}{4}\right)\)

\(A=4\left(x^2+2\cdot x\cdot0,5+0,25+2\right)\)

\(A=4\left(x+0,5\right)^2+8\)

\(4\left(x+0,5\right)^2\ge0\forall x\)

\(\Rightarrow4\left(x+0,5\right)^2+8\ge8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-0,5\)

Vậy \(MIN_A=8\Leftrightarrow x=-0,5\)

25 tháng 12 2018

\(A=4x^2+4x+9\)

\(A=4x^2+4x+1+8\)

\(A=\left(2x+1\right)^2+8\)

Vì (2x+1)2 + 8 \(\ge\) 0 \(\forall x\) => minA= 8

Dấu "x" xảy ra <=> 2x + 1 = 0

2x = 0 -1

2x = -1

x = \(\dfrac{-1}{2}\)

Vậy minA = 8 khi x = \(-\dfrac{1}{2}\)

// cậu tham khảo //

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

21 tháng 9 2016

Q = -4x2 + 4x + 3 = - (4x2 - 4x - 3) = - [(2x)2 - 2 . 2x  + 1 - 4]  = - [(2x - 1)2 - 4] = - (2x - 1)2 + 4 \(\le\)4

Đẳng thức xảy ra khi: -(2x - 1)2 = 0  => x = 0,5

Vậy giá trị lớn nhất của Q là 4 khi x = 0,5.