Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
Bài 2:
a) \(A=x^2+6\ge6>0\forall x\in R\)
b) \(B=\left(5-x\right)\left(x+8\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
\(C=1+\frac{6}{x^2+2}\)
\(\Rightarrow\frac{6}{x^2+2}\)phải lớn nhất hay \(x^2+2\)nhỏ nhất
Mà \(x^2+2\ge2\)\(\Leftrightarrow\frac{x^2+8}{x^2+2}\ge4\)
Mà MaxC=4 khi và chỉ khi x=0
Vậy MaxC=4 khi x=0
Tìm giá trị lớn nhất của biểu thức:
C = \(\frac{x^2+8}{x^2+2}\)
GTLN = 4
vì x = 0
nha bạn chúc bạn học tốt nha
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
\(C=\) \(\frac{x^2+8}{x^2+2}\)\(=\frac{\left(x^2+2\right)+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có \(x^2\ge0\) \(\forall x\)
=> \(x^2+2\ge2\) \(\forall x\)
=> \(\frac{6}{x^2+2}\le\frac{6}{2}\) \(\forall x\)
=> \(1+\frac{6}{x^2+2}\le4\)
\(MaxC=4\Leftrightarrow x=0\)