Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
a) ĐK: x2 - 7x + 8 ≥ 0
Đặt √(x2 - 7x + 8) = a (1)
⇔ a2 + a - 20 = 0
⇔ a = 4 hoặc a = -5
Thay vào (1) là tìm được x, kết hợp với ĐK là xong.
b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.
Dấu "=" xảy ra khi x = -4; y= 4. ....... là nghiệm của pt
a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)
\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)
Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm
c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)
\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)
Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)
Tiếp tục giải ;v
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
Áp dụng BĐT Bunyacovsky cho 2 bộ số ta có:
a) \(Y=\sqrt{1.\left(8+3x\right)}+\sqrt{\frac{1}{3}.\left(15-3x\right)}\le\sqrt{\left(1+\frac{1}{3}\right)\left(8+3x+15-3x\right)}\)
\(=\sqrt{\frac{92}{3}}\)
\(maxY=\sqrt{\frac{92}{3}}\Leftrightarrow x=\frac{37}{12}\)
b) \(Y=\sqrt{\frac{1}{3}.\left(21x-9\right)}+\sqrt{\frac{1}{7}.\left(28-21x\right)}\le\sqrt{\left(\frac{1}{3}+\frac{1}{7}\right)\left(21x-9+28-21\right)}=\sqrt{\frac{190}{21}}\)
\(maxY=\sqrt{\frac{190}{21}}\Leftrightarrow x=\frac{223}{210}\)
c) \(Y=\sqrt{\frac{1}{3}.\left(24x-15\right)}+\sqrt{\frac{1}{4}\left(40-24x\right)}\le\sqrt{\left(\frac{1}{3}+\frac{1}{4}\right)\left(24x-15+40-24x\right)}=\sqrt{\frac{175}{12}}\)
\(maxY=\sqrt{\frac{175}{12}}\Leftrightarrow x=\frac{11}{6}\)
Đính chính lại câu c: \(maxY=\sqrt{\frac{175}{12}}\Leftrightarrow x=\frac{205}{168}\)