Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi A(x):
\(A\left(x\right)=\frac{x+1999-1999}{\left(x+1999\right)^2}=\frac{x+1999}{\left(x+1999\right)^2}-\frac{1999}{\left(x+1999\right)^2}=\frac{1}{x+1999}-\frac{1999}{\left(x+1999\right)^2}\)
\(=\frac{1}{x+1999}-1999.\frac{1}{\left(x+1999\right)^2}=\frac{1}{x+1999}-1999.\left(\frac{1}{x+1999}\right)^2\)
Đặt \(\frac{1}{x+1999}=t\left(1\right)\)
PT \(\Leftrightarrow t-1999t^2=-1999t^2+t=-\left(1999t^2-t\right)=-\left[1999.\left(t^2-\frac{1}{1999}.t\right)\right]\)
\(=-\left[1999.\left(t^2-2.t.\frac{1}{3998}+\left(\frac{1}{3998}\right)^2-\left(\frac{1}{3998}\right)^2\right)\right]=....\) (tự biến đổi)
\(=-1999\left(t-\frac{1}{3998}\right)^2+\frac{1}{7996}=\frac{1}{7996}-1999\left(t-\frac{1}{3998}\right)^2\le\frac{1}{7996}\)
=>GTLN của \(t-1999t^2=\frac{1}{7996}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{3998}\)
Thay t vào (1) ta đc: \(\frac{1}{x+1999}=\frac{1}{3998}\Rightarrow x=1999\)
Vậy..................
tìm giá trị nhỏ nhất của
\(A=\frac{\left(x+a\right)\left(x+b\right)}{x}\)
\(với\left(a,b,x>0\right)\)
Dòng cuối mình nhầm nhé !!
Bỏ dòng cuối thay bằng cái này !!!!
\(A\ge a+b+2\sqrt{ab}\ge2\sqrt{ab}+2\sqrt{ab}=4\sqrt{ab}\) (\(a+b\ge2\sqrt{ab}\))
\(A=\frac{x^2+ax+bx+ab}{x}=x+a+b+\frac{ab}{x}\)
Áp dụng bất đẳng thức AM - GM cho 2 số dương \(x;\frac{ab}{x}\) ta có :
\(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)
\(\Rightarrow A\ge a+b+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\)có GTNN là 0
Ta có : \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)
Các số dương \(x\)và \(\frac{144}{x}\)Có tích ko đổi nên tổng nhỏ nhất khi và chỉ khi \(x=\frac{144}{x}\)
\(\Rightarrow x=12\)
Vậy \(Min\)\(A=49\Leftrightarrow x=12\)
Ta có:
\(A=\frac{\left(x+16\right)\left(x+19\right)}{x}\)
\(=\frac{x^2+25x+144}{x}=\frac{\left(x+12,5\right)^2-12,25}{x}\)
\(=\frac{\left(x+12,5\right)^2}{x}-\frac{12,25}{x}\ge\frac{-12,5}{x}\forall x>0\)
Đến đây dễ rồi bạn tự làm nốt !
a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)
\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)
Kết hợp với giả thiết vậy x = -1
Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)
c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )
d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)
\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0
e, tự làm nhéee
f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)
mà x + 4 > x + 2
\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)
Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )
Vậy ko có x nguyên để C < 0
g, Ta có : \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)
Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)
\(=\left(x+1\right)^2-9\ge-9\)
Dấu ''='' xảy ra khi x = -1
Vậy GTNN D là -9 khi x = -1
Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)
Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi \(x=\frac{144}{x}\)=> x=12
Vậy Min A = 49 khi và chỉ khi x=12
\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)
Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:
\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))
\(\Rightarrow A\ge25+24=49\)
Vậy \(minA=49\)\(\Leftrightarrow x=12\)
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)
\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)
\(< =>B=\frac{3x-4}{2x^2-4}\)
\(b,\)Với \(x=-2\)thì
\(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)
\(ĐKXĐ:x\ne2;x\ne0\)
a
\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)
\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)
b
\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)
c
\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)
\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)
\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)
Xét các trường hợp của x thì ra nghiệm bạn nhé
d
\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)
Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất
Casio sẽ giúp chúng ta phần này
e
Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)
g
\(\left|B\right|+3< 2x-1\)
Làm hệt như câu c nhé :D
1/8 bạn nhé
xét các trường hợp ra rồi xem cái nào lớn nhất