![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}\)
Lại có: \(x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\)
\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x=-1
P2 tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{2}{x^2+6x+12}\)
\(=\frac{2}{x^2+2.x.3+9+3}\)
\(=\frac{2}{\left(x+3\right)^2+3}\ge\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
![](https://rs.olm.vn/images/avt/0.png?1311)
C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3
Vậy MinC = -1/2 khi x = 1/3
M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)
Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2
Vậy MaxM = 6/5 khi x = -1/2
N = x - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy MaxN = 1/4 khi x = 1/2
Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A=\frac{3x^2+6x+11}{x^2+2x+3}=3+\frac{2}{x^2+2x+3}=3+\frac{2}{\left(x+1\right)^2+2}\)
Đặt \(B=\frac{2}{\left(x+1\right)^2+2}\),để A đạt giá trị lớn nhất thì B lớn nhất.
Mà B lớn nhất khi \(\left(x+1\right)^2+2\) bé nhất.
Lại có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\) (1)
Từ (1) suy ra: \(B\le\frac{2}{2}=1\Rightarrow A=3+B\le3+1=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy \(A_{max}=4\Leftrightarrow x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề : Tìm GTLN của \(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
Ta có : \(A=\frac{3x^2-6x+15+2}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{\left(x-1\right)^2+4}\le3+\frac{2}{4}=\frac{7}{2}\)
Đạt GTLN là 7/2 tại x = 1
\(A=-x^2-6x+3=-\left(x^2+6x-3\right)\)
\(=-\left(x^2+6x+9-12\right)\)
\(=-\left[\left(x+3\right)^2-12\right]=-\left(x+3\right)^2+12\le12\)
Vậy gt lớn nhất của A là 12\(\Leftrightarrow x=-3\)
\(A=-x^2-6x+3\)
\(A=12-\left(x^2+6x+9\right)\)
\(A=12-\left(x+3\right)^2\le12\)
Dấu = xảy ra khi x=-3