\(C=|x-3|+|2y+1|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì | x - 3 | ≥ 0 ∀ x và | 2y + 1 | ≥ 0 ∀ y

=> | x - 3 | + | 2x + 1 | ≥ 0 

=> Để C = | x - 3 | + | 2y + 1 | nhận giá trị nhỏ nhất thì C = 0

\(\Leftrightarrow\hept{\begin{cases}x - 3 = 0\\2y + 1 = 0\end{cases}\Rightarrow\hept{\begin{cases}x = 3\\y= \frac{-1}{2}\end{cases}}}\)

1 tháng 8 2021

Tìm giá trị nhỏ nhất của biểu thức \(F=|2x+7|+|5-x|\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

12 tháng 3 2019

1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)

*TH1: Nếu x-2y = 5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)

*TH2: Nếu x-2y = -5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)

Vậy giá trị nhỏ nhất của 3x - 2z là -57.

2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)

Dấu "=" xảy ra khi x = 0.

6 tháng 10 2019

bài 1 :

a) vì x + 1,5 luôn lớn hơn hoặc bằng 0 mà để x+1,5 đạt giá trị nhỏ nhất => x + 1,5 = 0=> x=-1,5

b) vì x- 2 luôn lớn hơn hoặc bằng 0 mà để x-2 - 9,10 đạt gtri nhỏ nhất => x- 2 = 0=> x=2

6 tháng 10 2019

Câu 1 :                                                      Bài giải

a, \(\text{ }\text{Do }\left|x+1,5\right|\ge0\) Dấu " = " xảy ra khi \(x+1,5=0\text{ }\Rightarrow\text{ }x=-1,5\)

\(\Rightarrow\text{ }Min\text{ }\left|x+1,5\right|=0\text{ khi }x=-1,5\)

b, \(\left|x-2\right|-9,10\) đạt GTNNN khi \(\left|x-2\right|\) đạt GTNN

\(\left|x-2\right|\ge0\)Dấu " = " xảy ra khi \(x-2=0\) \(\Rightarrow\text{ }x=2\)

\(\Rightarrow\text{ }\left|x-2\right|-9,10\ge-9,10\)

\(\text{Vậy }Min\text{ }\left|x-2\right|-9,10=-9,10\text{ khi }x=2\)

Câu 2 :                                         Bài giải

a, Do  \(-\left|2x-1\right|\le0\) Dấu " = " xảy ra khi \(-\left|2x-1\right|=0\text{ }\Rightarrow\text{ }2x-1=0\text{ }\Rightarrow\text{ }x=\frac{1}{2}\)

Vậy \(Max\text{ }-\left|2x-1\right|=0\text{ khi }x=\frac{1}{2}\)

b, Do  \(4-\left|5x+3\right|\le4\text{ }\)

Dấu " = " xảy ra khi \(4-\left|5x+3\right|=4\text{ }\Rightarrow\text{ }\left|5x+3\right|=0\text{ }\Rightarrow\text{ }5x+3=0\text{ }\Rightarrow\text{ }x=-\frac{3}{5}\)

\(\text{Vậy }Max\text{ }4-\left|5x+3\right|=4\text{ khi }x=-\frac{3}{5}\)

c, \(\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\) Dấu " = " xảy ra khi \(\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ }\Rightarrow\text{ }\left|x+3\right|=0\text{ }\Rightarrow\text{ }x+3=0\text{ }\Rightarrow\text{ }x=-3\)

\(\text{Vậy }Max\text{ }\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ khi }x=-3\)

8 tháng 7 2018

1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)

Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)

2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)

Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)

8 tháng 7 2018

1.

\(A=\left|x-0,4\right|+9\)

Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)

Vậy GTNN của A là 9 khi x = 0,4

2.

\(B=\frac{1}{8}-\left|x+3\right|\)

Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)

Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!