K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2016}\right)\)

\(A=\left(1-\frac{1}{\frac{2\left(2+1\right)}{2}}\right)\left(1-\frac{1}{\frac{3\left(3+1\right)}{2}}\right)...\left(1-\frac{1}{\frac{2016\left(2016+1\right)}{2}}\right)\)

\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{2016.2017-2}{2016.2017}\)(1)

Mà \(2016.2017-2=2016\left(2018-1\right)+2016-2018\)

\(=2016\left(2018-1+1\right)-2018=2016.2018-2018=2018.2015\)(2)

Từ (1) và (2), ta có:

\(A=\frac{4.1}{2.3}.\frac{5.2}{3.4}.\frac{6.3}{4.5}...\frac{2018.2015}{2016.2017}=\frac{\left(4.5.6...2018\right)\left(1.2.3...2015\right)}{\left(2.3.4...2016\right)\left(3.4.5...2017\right)}=\frac{1009}{3024}\)

26 tháng 8 2019

vô tcn của PTD/KM ?, https://olm.vn/thanhvien/kimmai123az, toàn câu tl copy, con giẻ rách này ko nên sông nx

Câu hỏi của Không Phaỉ Hoỉ - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của Ngọc Anh Dũng - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của Nguyễn Thu Hiền - Toán lớp 9 - Học toán với OnlineMath

Còn rất rất nhìu nx, ko có t/g

26 tháng 8 2019

À! dấu X đó là nhân chứ không phải x nha mọi người!

Mn oi, help meeeeeeeeeee.........!!!!!!!!!!!!!! :"(Câu 1: The ratio of three possitive integers a,b and c is 25:34 16:25 34:16. Sum of squares of them is 24309. Find the sum of them?*Tạm dịch: Tỉ lệ của 3 số nguyên dương a,b và c là 25:34 16:25 34:16. Tổng bình phương của chúng là 24309. Tìm tổng của chúng?Câu 2: Tìm giá trị của:A=\(\left(1-\frac{1}{1+2}\right)X\left(1-\frac{1}{1+2+3}\right)X...X\left(1-\frac{1}{1+2+3+...+2016}\right)\) *Chú Ý: "X" là...
Đọc tiếp

Mn oi, help meeeeeeeeeee.........!!!!!!!!!!!!!! :"(

Câu 1: The ratio of three possitive integers a,b and c is 25:34 16:25 34:16. Sum of squares of them is 24309. Find the sum of them?

*Tạm dịch: Tỉ lệ của 3 số nguyên dương a,b và c là 25:34 16:25 34:16. Tổng bình phương của chúng là 24309. Tìm tổng của chúng?

Câu 2: Tìm giá trị của:

A=\(\left(1-\frac{1}{1+2}\right)X\left(1-\frac{1}{1+2+3}\right)X...X\left(1-\frac{1}{1+2+3+...+2016}\right)\) *Chú Ý: "X" là dấu nhân, "x" là chx cái x

A.\(\frac{2015}{4031}\)

B.\(\frac{2015}{2016}\)

C.1

D.\(\frac{1009}{3024}\)

Câu 3: Chose the correct answer. Which the following functions satisfies f(x1-x2)=f(x1)+f(-x2)?

A.f(x)=10x

B.f(x)=\(\frac{10}{x}\)

C.f(x)=10x+2

D.f(x)=\(\frac{1}{2x+1}\)

*Tạm dịch*

Chọn đáp án đúng. Hàm số nào thỏa mãn f(x1-x2)=f(x1)+f(-x2)?

A.f(x)=10x

B.f(x)=\(\frac{10}{x}\)

C.f(x)=10x+2

D.f(x)=\(\frac{1}{2x+1}\)

!Mn nhớ ghi đáp án vs cách giải ra rõ ràng nha, mik chuẩn bị thi vào thứ Ba (14/1/2020) r nên mn bik câu nào cứ lm theo cách hỉu của pạn nhe! :3

Xin chân thành cảm ơn rất rất nhìu vì đã giải dùm mik nhoa! :D

0
23 tháng 9 2017

1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)

                vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)

2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)

\(\left|x+\frac{11}{2}\right|>5,5\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)

vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)

3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)

vay ....

7 tháng 8 2017

Bài 1  :

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)

\(=\frac{1}{2018}\)

8 tháng 8 2017

B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)

\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)

\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)

\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)

\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)

\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)

\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)

\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)

\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)

VẬY B=200