Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:\hept{\begin{cases}y\ne2\\y\ne4\end{cases}}\)
\(\frac{y-1}{y-2}-\frac{3+y}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)-\left(3+y\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Leftrightarrow y^2-5y+4-y^2-y+6=-2\)
\(\Leftrightarrow-6y+10=-2\)
\(\Leftrightarrow-6y+12=0\)
\(\Leftrightarrow y=2\)(KTM)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
\(a,\dfrac{y-1}{y-2}-\dfrac{y+3}{y-4}=\dfrac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y-4\right)-\left(y+3\right)\left(y-2\right)+2}{\left(y-2\right)\left(y-4\right)}=0\)\(\left(dkxd:y\ne4;2\right)\)
\(\Leftrightarrow y^2-4y-y+4-y^2+2y-3y+6+2=0\)
\(\Leftrightarrow-6y+12=0\)
\(\Leftrightarrow y=2\)\(\left(ktm\right)\)
Vậy ko có bất kì giá trị y nào để 2 biểu thức bằng nhau
\(b,\dfrac{8y}{y-7}+\dfrac{1}{7-y}=8\)
\(\Leftrightarrow\dfrac{8y}{y-7}-\dfrac{1}{y-7}=8\)\(\left(dkxd:y\ne7\right)\)
\(\Leftrightarrow8y-1-8\left(y-7\right)=0\)
\(\Leftrightarrow8y-1-8y+56=0\)(Vô lý)
Vậy ko có bất kì giá trị y nào để biểu thức có giá trị = 8
a) giải phương trình
\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2
=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)
=>2x2 - 3x - 2 = 2(x2 - 4)
<=>2x2 -3x - 2 = 2x2 - 8
<=>2x2 - 2x2 - 3x = -8 + 2
<=>-3x = -6
<=> x = 2
Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán
b) Ta phải giải phương trình
\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)
=>x = \(\dfrac{-7}{38}\)
c) Ta phải giải phương trình
\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)
không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)
Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
Câu 1:
\(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)
Câu 2:
\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
Câu 3:
\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)
Câu 4:
Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD
Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
y + 5 y - 1 - y + 1 y - 3 = - 8 y - 1 y - 3 Đ K X Đ : y ≠ 1 v à y ≠ 3 ⇔ y + 5 y - 3 y - 1 y - 3 - y + 1 y - 1 y - 3 y - 1 = - 8 y - 1 y - 3
⇔ (y + 5)(y – 3) – (y + 1)(y – 1) = - 8
⇔ y 2 – 3y + 5y – 15 – y 2 + 1 = - 8
⇔ 2y = 6 ⇔ y = 3 (loại)
Vậy không có giá trị nào của y thỏa mãn điều kiện bài toán.
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)