\(\frac{3\sqrt{2}}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

x + y = 2 ( 1 )

\(x-y=\frac{3\sqrt{2}}{2}\) ( 2 )

Cộng vế theo vế cảu ( 1 ) và ( 2 ) ta có :

x + y + x - y =    \(2+\frac{3\sqrt{2}}{2}\)   \(\Rightarrow\)2x =    \(2+\frac{3\sqrt{2}}{2}\)   \(\Rightarrow\)x =    \(1+\frac{3\sqrt{2}}{4}\)

y = 2 - x =    \(2-\left(1+\frac{3\sqrt{2}}{4}\right)\)   = \(1-\frac{3\sqrt{2}}{4}\)

Vậy  :

\(x^2\)+   \(y^2\)=   \(\left(1+\frac{3\sqrt{2}}{4}\right)^2\)   +   \(1-\left(\frac{3\sqrt{2}}{4}\right)^2\)   =   \(1+\frac{3\sqrt{2}}{2}\)  +  \(\frac{9}{8}\)+  1  -   \(\frac{3\sqrt{2}}{2}\)+   \(\frac{9}{8}\)

=   \(2+\frac{9}{4}\)

=   \(\frac{17}{4}\)

5 tháng 1 2021

Ta có : x + y = 2 

=> (x + y)2 = 4

=> x2 + y2 + 2xy = 4 (1)

Lại có x - y = \(\frac{3\sqrt{2}}{2}\)

=> \(\left(x-y\right)^2=\left(\frac{3\sqrt{2}}{2}\right)^2\)

=> x2 + y2 - 2xy = \(\frac{18}{4}\)(2)

Lấy (1) cộng (2) theo vế ta có 

x2 + y2 + 2xy + x2 + y2 - 2xy = 4 + 18/4

=> 2(x2 +y2) = 9,5

=> x2 + y2= 4,75

Vậy x2 + y2= 4,75 

17 tháng 8 2016

Ta có

\(\left(x+y\right)^2=x^2+y^2+2xy\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\) (1) 

\(\left(x-y\right)^2=x^2+y^2-2xy\)

\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\) (2)

Cộng (1) và (2)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2-2xy+\left(x-y\right)^2+2xy\)

\(\Rightarrow2\left(x^2+y^2\right)=\left(x+y\right)^2+\left(x-y\right)^2\)

\(\Rightarrow2\left(x^2+y^2\right)=2^2+\left(\frac{3\sqrt{2}}{2}\right)^2\)

\(\Rightarrow2\left(x^2+y^2\right)=4+4,5\)

\(\Rightarrow2\left(x^2+y^2\right)=8,5\)

\(\Rightarrow x^2+y^2=4,25\)

Vây \(x^2+y^2=4,25\)

17 tháng 8 2016

Ta có : \(\begin{cases}x+y=2\\x-y=\frac{3\sqrt{2}}{2}\end{cases}\)

Xét : \(\left(x+y\right)^2=x^2+y^2+2xy=4\left(1\right)\)

\(\left(x-y\right)^2=x^2-2xy+y^2=\frac{9}{2}\left(2\right)\)

Cộng (1) và (2) được : \(2\left(x^2+y^2\right)=4+\frac{9}{2}\Leftrightarrow x^2+y^2=\frac{17}{4}\)

17 tháng 8 2016

\(GT\Leftrightarrow\)\(\hept{\begin{cases}x^2-y^2=\sqrt[3]{2}\\2y=2-\sqrt[3]{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-y^2=\sqrt[3]{2}\\2y^2=\frac{17-12\sqrt{2}}{4}\end{cases}\Leftrightarrow}x^2+y^2=\sqrt[3]{2}+\frac{17-12\sqrt{2}}{4}=\frac{17}{4}}\)

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

11 tháng 2 2017

\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)

\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)

\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)

\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)

\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)

\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)

= - 3 (đpcm)

~~~

\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)

\(=\frac{x+2+x+x-2}{x^2+2x}\)

\(=\frac{3x}{x\left(x+2\right)}\)

\(=\frac{3}{x+2}\)

\(A\in Z\)

\(\Leftrightarrow3⋮x+2\)

\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)