Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
Đáp án B
Em có tập xác định D = ℝ và y ' = − x 2 + 2 m − 1 x + m + 3 .
Yêu cầu bài toán <=> y' = 0 có hai nghiệm phân biệt x 1 , x 2 thỏa mãn x 1 − x 2 ≤ 2 6
y' = 0 có 2 nghiệm phân biệt ⇔ Δ ' = m − 1 2 + m + 3 > 0 ⇔ m 2 − m + 4 > 0 , ∀ m
y ' = a cos x + b sin x = - m
Hàm số đồng biến trên R khi và chỉ khi
y ' ≥ 0 , ∀ x ∈ ℝ ⇔ a sin x + b cos x ≥ m ⇔ m ≤ m i n f x
với f x = a sin x + b cos x
Áp dụng bất đẳng thức Bunhiacopxki ta có:
f x ≤ a 2 + b 2 ⇔ - a 2 + b 2 ≤ f x ≤ a 2 + b 2
Vậy m ≤ - a 2 + b 2
Đáp án C