K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Phương trình x 2 + 2(m + 1)x + 4m = 0 có a = 1  0 và

∆ ' = ( m + 1 ) 2 – 4 m = m 2 – 2 m + 1 = ( m – 1 ) 2   ≥ 0 ; ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có

X é t   x 1 ( x 2   –   2 ) + x 2 ( x 1 – 2 ) > 6 ⇔ 2 x 1 .   x 2 – 2 ( x 1 + x 2 ) > 6

⇔ 8m + 4(m + 1) – 6 < 0 ⇔ 12m – 2 > 0 ⇔ m > 1 6

Vậy m > 1 6   là giá trị cần tìm

Đáp án: A

a: Δ=(-2m)^2-4*3*1=4m^2-12

Để phương trình có nghiệm kép thì 4m^2-12=0

=>m^2=3

=>\(m=\pm\sqrt{3}\)

b: 

TH1: m=0

=>-6x-3=0

=>x=-1/2(nhận)

TH2: m<>0

Δ=(-6)^2-4*4m*(-m-3)

=36-16m(-m-3)

=36+16m^2+48m

=16m^2+48m+36

Để phương trình có nghiệm kép thì 16m^2+48m+36=0

=>m=-3/2

c: TH1: m=-2

=>-2(-2-1)x+4=0

=>6x+4=0

=>x=-2/3(nhận)

TH2: m<>-2

Δ=(2m-2)^2-4(m+2)*4

=4m^2-16m+4-16m-32

=4m^2-32m-28

Để pt có nghiệm kép thì 4m^2-32m-28=0

=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)

d: TH1: m=6

=>18x-2=0

=>x=1/9(nhận)

TH2: m<>6

Δ=(3m)^2-4*(-2)(m-6)

=9m^2+8m-48

Để pt có nghiệm kép thì 9m^2+8m-48=0

=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)

a: Trường hợp 1: m=0

Pt sẽ là \(6\cdot\left(-2\right)x+4\cdot0-7=0\)

=>-12x-7=0

=>x=-7/12(nhận)

Trường hợp 2: m<>0

\(\Delta=\left(6m-12\right)^2-4m\left(4m-7\right)\)

\(=36m^2-144m+144-16m^2+28m\)

\(=20m^2-116m+144\)

Để phương trình có nghiệm thì \(20m^2-116m+144>=0\)

Đặt \(20m^2-116m+144=0\)

\(\Delta=\left(-116\right)^2-4\cdot20\cdot144=1936\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=4\\m_2=\dfrac{9}{5}\end{matrix}\right.\)

Do đó: Bất phương trình xảy ra khi m<=9/5 hoặc m>=4

Vậy: m<=9/5 hoặc m>=4

b: Trường hợp 1: m=0

Pt sẽ là 1=0(vô lý)

Trường hợp 2: m=1

Pt sẽ là 2x+1=0

hay x=-1/2(nhận)

Trường hợp 3: m khác 0 và m khác 1

\(\Delta=\left(2m\right)^2-4\left(m^2-m\right)=4m^2-4m^2+4m=4m\)

Để phương trình có nghiệm thì 4m>0

hay m>0

Vậy: m>0

22 tháng 4 2020

a) Phương trình (1) có nghiệm x=-2 khi:

(-2)2-(m+5).(-2)-m+6=0

<=> 4+2m+10-m+6=0

<=> m=-20

b) \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+10m+25+4m-24=m^2+14m+1\)

Phương trình (1) có nghiệm khi \(\Delta=m^2+14m+1\ge0\)(*)

Với điều kiện trên, áp dụng định lý Vi-et ta có:

\(S=x_1+x_2=m+5;P=x_1\cdot x_2=-m+6\)

Khi đó:

\(x_1^2x_2+x_1x_2^2=24\)<=> \(x_1x_2\left(x_1+x_2\right)=24\)

<=> (-m+6)(m+5)=24

<=> m2-m-6=0

<=> m=3; m=-2

Giá trị m=3 (tm), m=-2 (ktm) điều kiện (*)

Vậy m=3 là giá trị cần tìm

AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:
a. Với $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x-1)(x-5)=0$

$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có nghiệm $x=-2$ thì:

$(-2)^2-(m+5)(-2)-m+6=0$

$\Leftrightarrow 4+2(m+5)-m+6=0$

$\Leftrightarrow 20+m=0$

$\Leftrightarrow m=-20$

 

Δ=(m-1)^2-4(m^2-m)

=m^2-2m+1-4m^2+4m

=-3m^2+2m+1

Để phương trình có hai nghiệm thì -3m^2+2m+1>=0

=>-1/3<=m<=1

(1+x1)^2+(1+x2)^2=6

=>x1^2+x2^2+2(x1+x2)+2=6

=>(x1+x2)^2-2x1x2+2(m-1)+2=6

=>(m-1)^2-2(m^2-m)+2m=6

=>m^2-2m+1-2m^2+2m+2m=6

=>-m^2+2m-5=0

=>Loại

9 tháng 5 2023

cho mình cách giải chi tiết đc ko 🙏

b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)

\(=4m^2+12m+9-16m-8\)

\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Theo đề, ta có:

\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=4m+2\)

\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)

\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)

\(\Leftrightarrow40m^2-112m-98=0\)

\(\Leftrightarrow40m^2-140m+28m-98=0\)

=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)

=>(2m-7)(20m+14)=0

=>m=7/2 hoặc m=-7/10

12 tháng 2 2023

a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)

(*) \(m\ne0\) Phương trình có nghiệm

\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\) 

Hệ thức Viet kết hợp 4x1 + 3x2 = 1

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)

\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)

\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)

\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1