Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2=a;y^2=b\left(\text{a,b }\ge0\right)\text{ ta có:}\)
\(a+b=2\)
\(\Rightarrow3a^2+5ab+2b^2+2b\)
\(=\left(3a^2+3ab\right)+\left(2ab+2b^2\right)+2b\)
\(=3a\left(a+b\right)+2b\left(a+b\right)+2b\)
\(=\left(a+b\right)\left(3a+2b\right)+2b\)
\(\text{Mà }a+b=2\text{ nên:}\)
\(=2\left(3a+2b\right)+2b\)
\(=6\left(a+b\right)=6.2=12\)
Vậy....
Ta sẽ đặt x^2=a;y^2=b(với Đk:a,b không âm) để giảm số mũ xuống
Từ giả thiết suy ra a+b=2
=>3x^4+5x^2y^2+2y^4+2y^2
=3a^2+5ab+2b^2+2b
=(3a^2+3ab)+(2ab+2b^2)+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4*2+2*2=12
A=3x4+5x2y2+2y4+2y2 biết x2+y2=2
A=3x2.x2+3x2y2+2.x2y2+y2.y2+2y2
A=3x2(x2+y2)+2.y2(x2+y2)+2y2
A=3x2.2+2y2.2+2y2
A=6x2+2y2(2+1)
A=6x2+2y2.3
A=6x2+6y2 =6(x2+y2)=6.2=12
Từ giả thiết suy ra a+b=2
=>3x\(^4\)+5x\(^2\)y\(^2\)+2y\(^4\)+2y\(^2\)
=3a\(^2\)+5ab+2b\(^2\)+2b
=(3a\(^2\)+3ab)+(2ab+2b\(^2\))+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4.2+2.2=12
Vậy biểu thức đó bằng 12
Ta sẽ đặt x2 = a, y2 = b(với điều kiện :a,b không âm) để giảm số mũ xuống
Từ giả thiết suy ra a+b=2
=>3x4+5x2y2+2y4+2y2
=3a2+5ab+2b2+2b
=(3a2+3ab)+(2ab+2b2)+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4.2+2.2
=12
sao bn biến đổi được 4.2+2.2 vậy Thùy Linh