Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^6}=\frac{3^5}{0.2}=243:\frac{1}{5}=1215\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}=\frac{2^7\cdot\left(3^2\right)^3}{2^5\cdot3^5\cdot\left(2^3\right)^2}=\frac{2^7\cdot3^6}{2^{11}\cdot3^5}=\frac{3}{2^4}=\frac{3}{16}\)
câu cuối ko bt
Xin lỗi vì đã ns dối, ko phải tớ ko bt giải mà là tại mama kêu ghê quá nên ko kịp viết lời giải câu cuối !
\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\frac{2^3\cdot3^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{27\cdot13}{-13}=-27\)
a,\(\frac{4^2.4^3}{2^{10}}=\frac{4^5}{2^{10}}=\frac{4^5}{4^5}=1\)
\(\frac{\left(0.6\right)^5}{\left(0.2\right)^6}=1215\)
còn lại làm đc mà
a) \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b) \(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{3^5.0,2^5}{0,2^6}=\frac{3^5}{0,2}=\frac{243}{0,2}=1215\)
c) \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3}{2^{11}}=\frac{3}{2^4}=\frac{3}{16}\)
d) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{6^2\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^2}{-13}=\frac{3^2\left(6^2+1\right)}{-13}=\frac{9.37}{-13}=\frac{333}{-13}\)
E = \(\frac{\left(2^2\right)^6.\left(3^2\right) ^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
E = \(\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)
E = \(\frac{2^{12}.3^{10}+2^{13}.3^{10}.5}{-2^{11}.3^{11}.\left(2.3+1\right)}\)
E = \(\frac{2^{12}.3^{10}.\left(1+5\right)}{-2^{11}.3^{11}.7}\)
E = \(\frac{2^{12}.3^{10}.6}{-2^{11}.3^{11}.7}\)
E=\(\frac{-2^{11}.\left(-2\right).3^{10}.6}{-2^{11}.3^{10}.3.7}\)
E = \(\frac{-2.6}{3.7}=-\frac{4}{7}\)
Vậy E = -4/7
Ý F bn lm tương tự nha
a) \(\frac{2^7}{6^5}\times\frac{9^3}{8^8}=\frac{2^7}{2^5\times3^5}\times\frac{3^6}{2^{24}}=\frac{2^7\times3^6}{2^{29}\times3^5}=\frac{3}{4194304}\)
b) \(\frac{6^3+3\times6^2+3^3}{-13}=\frac{2^3\times3^3+3\times2^2\times3^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{27\times13}{-13}=-27\)