Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 2 đường thẳng trùng nhau thì
\(\dfrac{a-1}{3-a}=\dfrac{2}{1}\)
ĐK: \(a\ne3\)
=> a-1=6-2a
<=>3a=7
<=>a=\(\dfrac{7}{3}\)
Vậy a=\(\dfrac{7}{3}\)thì 2 đường thẳng trên song song
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
\(\left(d_1\right):y=\left(m-1\right)x\left(ĐK:m\ne1\right)\)
\(\left(d_2\right):y=3x-1\)
a) Để (d1) và (d2) song song với nhau thì:
\(m-1=3\Rightarrow m=4\left(TM\right)\)
b) Để (d1) và (d2) cắt nhau thì:
\(m-1\ne3\Rightarrow m\ne4\)
c) Vì tung độ gốc của (d1) là 0, của (d2) là -1 nên hai đường thẳng trên không bao giờ trùng nhau
Hai đường thẳng y = (a – 1)x + 2 và y = (3 – a)x + 1 có tung độ góc khác nhau (2 ≠ 1), do đó chúng song song với nhau khi các hệ số của x bằng nhau: a – 1 = 3 – a => a = 2.
Vậy, khi a = 2 thì hai đường thẳng song song với nhau.
Hai đường thẳng y = (a -1)x +2 (a ≠1) và
y =(3 – a)x+1 (a ≠3) song song với nhau
⇔ a – 1 = 3 – a ; a ≠ 1; a ≠ 3( đã có 2 ≠ 1)
⇔ a = 2 (nhận )
Vậy: Với a = 2 thì hai đường thẳng đã cho song song.