K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)

Dấu '=' xảy ra khi x=15

b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)

Dấu '=' xảy ra khi a=-1/2

Bài 2: 

a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x=2

19 tháng 12 2016

GTNN của P = - 1  khi x = 2

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

20 tháng 3 2020

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)

22 tháng 3 2020

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.

24 tháng 1 2017

A=a4-2a3+3a2-4a+5

=a4-2a3+a2+2a2-4a+2+3

=(a2-1)2+2(a-1)2+3 >= 3 với mọi x (do 2 cái ngoặc >= 0)

minA=3,dấu "=" xảy ra <=> a=1

24 tháng 1 2017

bạn viết sai rồi phải là (a2-a)2 chứ

5 tháng 2 2017

A = a^4 - 2a^3 +a^2 + 2a^2 - 4a + 2 +3 
A = ( a^4 - 2a^3 + a^2) + 2 ( a^2 - 2a +1) +3 
A = ( a^2 - a)^2 + 2 ( a-1)^2 + 3 Có ( a^2 - a )^2 >= 0 với mọi giá trị của a 
và ( a-1)^2 >=0 với mọi giá trị của a 
Nên suy ra ta có => (a^2 - a)^2 + 2(a - 1)^2 + 3 >= 3 
Dấu " = " xảy ra <=> a -1 =0 
<=> a = 1 
Vậy B min = 3 <=> a =1 

5 tháng 2 2017

Ta có : A=a4-2a3+3a2-4a+5

=a4-2a3+a2+2a2-4a+2+3

=(a2-a)2+2(a-1)2+3

Mà : \(\left(a^2-a\right)^2+2\left(a-1\right)^2\ge0\)

\(\Rightarrow\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Vậy MinA=3

Dấu "=" xảy ra khi a-1=0

                       \(\Rightarrow\) a=1