\(A=\frac{x^2}{x-1}\) với x > 1.

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

Bài 1 : 

a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}+1}{x}\)

b) \(P>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)

\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)

\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)

\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)

Vậy P > 1/2 với mọi x> 0 ; x khác 1

19 tháng 8 2020

Bài 2 : 

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)

\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)

\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)

b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )

Thay a vào biểu thức K , ta có :

\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

11 tháng 8 2019

2.

a)

\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)

b)

\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)

c)

\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)

11 tháng 8 2019

1. (Ko viết lại đề nha :v)

a)

\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)

Vậy......

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)

13 tháng 9 2019

\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

a.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\) 

\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)

\(\Leftrightarrow3>2\)

Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)

Lát mình giải 2 câu kia,di ăn com cái

13 tháng 9 2019

b.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)

\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)

\(\Leftrightarrow x>0\)

Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)

c.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)

\(\Leftrightarrow x-4\sqrt{x}+5< 0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)

Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!