![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho x,y>0 và x+y \(\ge\)3 .Tìm gí trị nhỏ nhất của biểu thức A=\(2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)
\(A=\left(\frac{14}{x}+\frac{14}{x}+\frac{7}{4}x^2\right)+\left(\frac{1}{2y}+\frac{1}{2y}+\frac{y^2}{2}\right)+\frac{x^2}{4}+\frac{y^2}{2}\)
Áp dụng BĐT Cauchy cho 3 số dương và BĐT Bunyakovsky dạng cộng mẫu ta có:
\(A\ge3\sqrt[3]{\frac{14}{x}\cdot\frac{14}{x}\cdot\frac{7}{4}x^2}+3\sqrt[3]{\frac{1}{2y}\cdot\frac{1}{2y}\cdot\frac{y^2}{2}}+\frac{\left(x+y\right)^2}{4+2}\)
\(\ge3\cdot7+3\cdot\frac{1}{2}+\frac{3^2}{6}=21+\frac{3}{2}+\frac{3}{2}=24\)
Dấu "=" xảy ra khi: x = 2 , y = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Thay \(x=25\)vào B:
=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)
b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{x^2+x+1}{x^2+2x+2}\Leftrightarrow Px^2+2x.P+2P=x^2+x+1\)
\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(2P-1\right)=0\)
Xét P = 1 thì x = -1
Xét P khác 1 thì \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)\left(2P-1\right)\ge0\)
\(\Leftrightarrow-4P^2+8P-3\ge0\Leftrightarrow\frac{1}{2}\le P\le\frac{3}{2}\)
=\(\frac{\frac{x^2}{2}+x+1+\frac{x^2}{2}}{x^2+2x+2}\)
=\(\frac{1}{2}\)+\(\frac{\frac{x^2}{2}}{x^2+2x+2}\)
=\(\frac{1}{2}\)+\(\frac{x^2}{2x^2+4x+4}\)\(\ge\)\(\frac{1}{2}\)
"="<=>x=0
Vậy Min y = \(\frac{1}{2}\)