Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=/x-2010/+/x-2012/+/x-2014/
=/x-2012/+/2014-x/+/x-2010/>=/x-2012/+/2014-x+x-2010/=/x-2012/+4
lại có /x-2012/>=0
=>A>=4
=>min A=4 khi đó\(\hept{\begin{cases}x-2012=0\\\left(x-2012\right)\left(x-2014\right)< =0\end{cases}}< =>\hept{\begin{cases}x=2012\\2012< =x< =2014.\end{cases}}\)
=>x=2012 (tmđk)
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)
Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)
\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2011\le x\le2015\)
Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2012\le x\le2014\)
Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)
\(\Leftrightarrow x=2013\)
Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)
Hay \(A\ge6\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)
Vậy \(A_{min}=6\Leftrightarrow x=2013\)
\(M=\left|x-2012\right|+\left|x-2013\right|=\left|x-2012\right|+\left|2013-x\right|\)
\(\ge\left|x-2012+2013-x\right|=1\)
Áp dụng công thức: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Dấu "=" xảy ra <=> \(\left(x-2012\right).\left(2013-x\right)\ge0\)
\(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)
Vậy Mmin = 1 khi và chỉ khi x={2012;2013}
Ta có M = |2012 - x| + |2013-x| = |2012 - x|+|x-2013| \(\ge\)|2012-x+x-2013|
=|2012-2013|=|-1|=1
\(\Rightarrow\) Mmin=1
Ta có :
| x - 2012 | + | x - 2013 | = | x - 2012 | + | 2013 - x | \(\ge\) | x - 2012 + 2013 - x | = 1
Vậy Mmin = 1 khi 2012 \(\le x\le2013\)
Ta có: \(M=\left|x-2012\right|+\left|x-2013\right|\ge\left|2012-x\right|+\left|x-2013\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2012-x\right|+\left|x-2013\right|\ge\left|2012-x+x-2013\right|=\left|2012-2013\right|=1\)
Dấu " = " xảy ra khi \(2012-x\ge0;x-2013\ge0\)
\(\Rightarrow x\le2012;x\ge2013\)
\(\Rightarrow2012\le x\le2013\)
Vậy \(MIN_M=1\) khi \(2012\le x\le2013\)
Ta có :
\(A=\left|x-2012\right|+\left|x-2013\right|=\left|x-2012\right|+\left|2013-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(A=\left|x-2012\right|+\left|2013-x\right|\)
\(\Leftrightarrow A\ge\left|x-2012+2013-x\right|\)
\(\Leftrightarrow A\ge1\)
Dấu"=" xảy ra khi :
\(\left(x-2012\right)\left(2013-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2012\ge0\\2013-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2012\le0\\2013-x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2012\\2013\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2012\\2013\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2012\le x\le2013\\x\in\varnothing\end{matrix}\right.\)
Vậy ...
Mình mới học lớp 7 ko biết bất đảng thức là gì-,-