Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 111+112+113+...+112018+112019
A = (111+112+113)+...+(112017+112018+112019)
A = 11(1 + 11 + 112) + 114(1+11+112) + ... + 112017(1+11+112)
A = 11 . 133 + 114 . 133 + ... + 112017 . 133
A = 133(11 + 114 + ... + 112017) chia cho 12 dư 1 (vì 133 chia cho 12 dư 1)
=> 111+112+113+...+112018+112019 chia cho 12 dư 1
Căng thật, lớp 6 đã học đồng dư =((!
301293 : 13
Ta có: 301246 đồng dư với 1 (mod 13)
=> 301292 đồng dư với 1 (mod 13) và 93 đồng dư với 93.
Vậy 301293 : 13 dư 93
P/s: mình không chắc, mới học lớp 6
Ta có :
3012 \(\equiv\)9 ( mod13 )
301293 \(\equiv\)993 ( mod13 ) , mà 993 \(\equiv\)1 ( mod13 )
=> 301293 \(\equiv\)1 ( mod13 )
Vậy 301293 : 13 dư 1
nếu là 20172017 thì bằng 1551693,6153
lấy 4 chữ số ở phần thập phân
t.i.c.k cho mình nhé
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick
Ta gọi số chia trong phép ti trên là A
Ta có: 2.A=2+2^2+2^3+...+2^2016
2.A-A=(2+2^2+2^3+...+2^2015+2^2016)-(2+2^2+2^3+...+2^2015+1)
=2^2016-1
biểu thức sẽ được rút gọn thành: 2^2018:(2^2016-1)
Số dư của biểu thức trên là:2^2018-(2^2018-4)=4
Lớp 6 đã học đồng dư rồi, căng nhỉ
\(3^{100}=\left(3^6\right)^{16}.3^4\equiv1^{16}.4=4\left(mod7\right)\)
\(3^{100}=\left(3^3\right)^{33}.3\equiv1^{33}.3=3\left(mod13\right)\)