Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a ≠ 1; a ≥ 0
\(\dfrac{a-5\sqrt{a}+4}{a-1}=\dfrac{a-\sqrt{a}-4\sqrt{a}+4}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)-4\left(\sqrt{a}-1\right)}{a-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)
b) a ≥ 0; \(x\ne\pm\sqrt{3}\)
\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=\dfrac{1}{x-\sqrt{3}}\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{a-5\sqrt{a}+4}{a-1}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\sqrt{3}\end{matrix}\right.\)
Ta có: \(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\)
\(=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
a) ĐKXĐ: \(x\ge0;x\ne9\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}+\frac{5\sqrt{x}+3}{x-9}\)
\(=\frac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b: Thay x=16 vào A, ta được:
\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)
\(=\left[\frac{3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right].\left(\sqrt{x}+1\right)\)
\(=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
b) Ta có: \(x=\frac{4}{9}\)thỏa mãn ĐKXĐ
\(\Rightarrow\)Thay \(x=\frac{4}{9}\)vào biểu thức A ta có:
\(A=\frac{\sqrt{\frac{4}{9}}+2}{\sqrt{\frac{4}{9}}-1}=\frac{\frac{2}{3}+2}{\frac{2}{3}-1}=\frac{\frac{8}{3}}{-\frac{1}{3}}=-8\)
c) Ta có: \(A=\frac{5}{4}\)\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}+2\right)=5\left(\sqrt{x}-1\right)\)\(\Leftrightarrow4\sqrt{x}+8=5\sqrt{x}-5\)
\(\Leftrightarrow\sqrt{x}=13\)\(\Leftrightarrow x=169\)( thỏa mãn ĐKXĐ )
Vậy \(x=169\)
\(a,ĐKXĐ:x\ne1,x>0\)
\(A=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)
\(A=\frac{3+\sqrt{x}-1}{x-1}.\frac{\sqrt{x}+1}{1}\)
\(A=\frac{2+\sqrt{x}}{\sqrt{x}-1}\)
với \(x=\frac{4}{9}\)
\(< =>A=\frac{2+\sqrt{\frac{4}{9}}}{\sqrt{\frac{4}{9}}-1}\)
\(A=\frac{2+\frac{2}{3}}{\frac{2}{3}-1}=\frac{\frac{8}{3}}{\frac{-1}{3}}=-8\)
\(c,\frac{5}{4}=\frac{2+\sqrt{x}}{\sqrt{x}-1}\)
\(5\sqrt{x}-5=8+4\sqrt{x}\)
\(\sqrt{x}=13< =>x=169\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
ĐKXĐ: a>=0; a<>9
\(Q=\dfrac{3}{\sqrt{a}-3}+\dfrac{2}{\sqrt{a}+3}-\dfrac{a-5\sqrt{a}-3}{9-a}\)
\(=\dfrac{3\left(\sqrt{a}+3\right)+2\left(\sqrt{a}-3\right)+a-5\sqrt{a}-3}{a-9}\)
\(=\dfrac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\dfrac{a}{a-9}\)