![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(\orbr{\begin{cases}x>\sqrt{2}+1\\\frac{-1}{2}\le x< 1-\sqrt{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{1}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}.\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(A=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(A=x-1\)
(ĐKXĐ là: \(x>0;x\ne1\))
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: (1-x)(2x-1)>=0
\(\Rightarrow\hept{\begin{cases}1-x>=0\\2\text{x}-1>=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{1}{2}\end{cases}}\)
vậy 1/2<=x<=1
bé hơn hoặc bằng nha
![](https://rs.olm.vn/images/avt/0.png?1311)
sữa đề chút
a) đkxđ : \(x>2;x\ne3\)
b) ta có : \(A=\dfrac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}=\dfrac{\sqrt{\left(\sqrt{x-2}-1\right)^2}}{\sqrt{x-2}-1}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ của \(\sqrt{x+1}\) và \(\sqrt{x-1}\) lần lượt là \(x\ge-1\) và \(x\ge1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ: \(x>0,x\ne1,x\ne2\)
b/
\(P=\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right]:\left[\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right]\)
= \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
c/ Với \(x>0,x\ne1,x\ne2\)
Để P=\(\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=8\)
\(\Leftrightarrow x=64\left(tm\right)\)
Vậy để \(P=\dfrac{1}{4}\) thì x=64
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
Để \(\sqrt{x}-1\) được xác định cần:
\(\sqrt{x}\ge0\)
<=> \(x\ge0\)
Vậy ĐKXĐ của \(\sqrt{x}-1\) là \(x\ge0\)
ua chu ko phai x khac 1 ha b