\(\sqrt{\frac{2x-3}{2x^2+1}}\) > hoặc = 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

\(\sqrt{\frac{2x-3}{2x^2+1}}\)có nghĩa <=> \(\frac{2x-3}{2x^2+1}\ge0\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)( vì 2x2 + 1 > 0 )

15 tháng 8 2021

\(\sqrt{\frac{2x-3}{2x^2+1}}\)  > hoặc =0

=> 2x-3 > hoặc =0 ( vì 2x^2 + >0 )

=> 2x  > hoặc =3

=>x  > hoặc = 3/2

29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM

1 tháng 7 2018

Áp dụng BĐT AM-GM ta có:

\(2x^2+y^2\ge2\sqrt{2x^2.y^2}=2\sqrt{2}xy\)

\(\Rightarrow\sqrt{2x^2+y^2}\ge\sqrt{2\sqrt{2}xy}=\sqrt{2\sqrt{2}}\sqrt{xy}\)

\(\Rightarrow P=\frac{\sqrt{2x^2+y^2}}{\sqrt{xy}}\ge\frac{\sqrt{2\sqrt{2}}.\sqrt{xy}}{\sqrt{xy}}=\sqrt{2\sqrt{2}}=\)

Vậy minP=\(\sqrt{2\sqrt{2}}\) đạt được khi \(\sqrt{2}x=y\)

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

...