Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)
b)
\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)
\(\Leftrightarrow 1\leq x\leq 5\)
c)
\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)
d)
\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)
e) \(x\in\mathbb{R}\)
f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)
Do đó không tồn tại $x$ để hàm số tồn tại
g)
\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow 1< x\leq 6\)
a/ 2x-x2>0
\(\Leftrightarrow\) x(2-x)>0
\(\Leftrightarrow\) 0<x<2
b/ \(\left\{{}\begin{matrix}x-3>0\\5-x>0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)\(\Leftrightarrow\) 3<x<5
c/ x2-5x+6>0
\(\Leftrightarrow\) (x-3)(x-2)>0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}6x-1>0\\x+3>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>\frac{1}{6}\\x>-3\end{matrix}\right.\)
\(\Leftrightarrow\) x > \(\frac{1}{6}\)
a) ĐKXĐ: \(5x-7\ge0\) \(\Leftrightarrow\)\(x\ge\frac{7}{5}\)
b) ĐKXĐ: \(2x^2+x\ge0\)\(\Leftrightarrow\) \(x\left(2x+1\right)\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge0\\x\le-\frac{1}{2}\end{cases}}\)
c) ĐKXĐ: \(4-7x\ge0\)\(\Leftrightarrow\)\(x\le\frac{4}{7}\)
d) ĐKXĐ: \(x^3+x\ge0\) \(\Leftrightarrow\)\(x\left(x^2+1\right)\ge0\)\(\Leftrightarrow\)\(x\ge0\)
e) ĐKXĐ: \(\frac{x-5}{2x+1}\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge5\\x< -\frac{1}{2}\end{cases}}\)
f) ĐKXĐ: \(\frac{3-2x}{3x-2}\ge0\) \(\Leftrightarrow\)\(\frac{2}{3}< x\le\frac{3}{2}\)
Lời giải:
a) ĐKXĐ: $5-4x\geq 0\Leftrightarrow x\leq \frac{5}{4}$
b) ĐKXĐ: \(\left\{\begin{matrix} 3x-4\neq 0\\ \frac{-5}{3x-4}\geq 0\end{matrix}\right.\Leftrightarrow 3x-4< 0\Leftrightarrow x< \frac{4}{3}\)
c) ĐKXĐ: $x^2+7\geq 0\Leftrightarrow x\in\mathbb{R}$
d)
ĐKXĐ: \(x^2-4x+4\geq 0\Leftrightarrow (x-2)^2\geq 0\Leftrightarrow x\in\mathbb{R}\)
n)
\(\left\{\begin{matrix} x+1\neq 0\\ \frac{3x-5}{x+1}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x-5\geq 0\\ x+1>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-5\leq 0\\ x+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{5}{3}\\ x< -1\end{matrix}\right.\)
m)
ĐKXĐ: \(\left\{\begin{matrix} 3x-1\neq 0\\ \frac{x^2}{3x-1}\geq 0\end{matrix}\right.\Leftrightarrow 3x-1>0\Leftrightarrow x>\frac{1}{3}\)
g)
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 5-2x>0\end{matrix}\right.\Leftrightarrow 1\leq x< \frac{5}{2}\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
3<x<5
*Xét căn thức \(\frac{1}{\sqrt{x-3}}\)có nghĩa\(\Leftrightarrow x-3>0\Leftrightarrow x>3\)
*Xét căn thức \(\frac{3x}{\sqrt{5-x}}\)có nghĩa\(\Leftrightarrow\hept{\begin{cases}5-x>0\\3x\ge0\end{cases}}\Leftrightarrow0\le x< 5\)
Vậy 3 < x < 5