Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
ĐKXĐ \(x\ne0;x\ne1;x\ne-1\)
\(A=\frac{\left(x+1+1-x\right)}{\left(1-x^2\right)-\frac{5-x}{1-x^2}}:\frac{\left(1-2x\right)}{x^2-1}\)
\(A=\frac{\left(x-3\right)}{\left(1-x^2\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)
\(A=\frac{\left(3-x\right)}{\left(x^2-1\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)
\(A=\frac{\left(3x-2\right)}{1-2x}\)
\(a,ĐKXĐ:x\ne\pm1;x\ne\frac{1}{2}\)
\(A=\left(\frac{1}{x-1}+\frac{2}{x+1}-\frac{5-x}{1-x^{^2}}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{1}{x-1}+\frac{2}{x+1}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}:\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+4}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\frac{2x+4}{1-2x}\)
\(b,Vớix\ne\pm1;x\ne\frac{1}{2}\)ta có \(A=\frac{2x+4}{1-2x}=\frac{-1\left(1-2x\right)+5}{1-2x}=-1+\frac{5}{1-2x}\)
Với x thuộc Z để A nguyên thì \(5⋮1-2x\Rightarrow1-2x\inƯ\left\{5\right\}=\left\{\pm1;\pm5\right\}\)
Với 1-2x=1 => x= 0(TMĐKXĐ)
với 1-2x=-1 => x=1(loại)
với 1-2x=5 => x=-2(tmđkxđ)
với 1-2x=-5 => x=3(tmđkxđ)
Vậy với \(x\in\left\{0;-2;-3\right\}\)thì A nguyên
ĐKXĐ: x∉{1;3}
Ta có: \(\frac{x-5}{x-1}+\frac{2}{x-3}=1\)
\(\Leftrightarrow\frac{\left(x-5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-8x+15+2x-2=x^2-4x+3\)
⇔\(x^2-6x+13-x^2+4x-3=0\)
\(\Leftrightarrow-2x+10=0\)
⇔\(-2x=-10\)
hay x=5(tm)
Vậy: x=5
\(PT< =>\frac{\left(x-5\right)\left(x-3\right)+2\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=1\)
<=> \(\frac{x^2-8x+15+2x-2}{\left(x-1\right)\left(x-3\right)}=1\)
<=> \(x^2-6x+13=x^2-4x+3\)
<=> \(x^2-6x+13-x^2+4x-3=0\)
<=> \(-2x+10=0\)
<=> x = 5 (TMDK)
Câu 1:
a)\(x^2-4+\left(x-2\right)\left(2x+1\right)=0\)
\(\Rightarrow x^2-4+2x^2+x-4x-2=0\)
\(\Rightarrow3x^2-3x-6=0\)
\(\Rightarrow x^2-x-2=0\)(Vì nhân tử chung là 3 thì ra bằng 0)
\(\Rightarrow x^2-2x+x-2=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy x=-1;2
Câu 2:
a)\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\)
b)\(\frac{x+1}{x-1}-\frac{x-1}{x+2}=\frac{3}{x^2-1}\)(\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\))
\(\Rightarrow\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1^{ }\right)^2}{\left(x^2-1\right)\left(x+2\right)}=\frac{3\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+1\right)^2\left(x+2\right)-\left(x+1\right)\left(x-1\right)^2=3x+6\)
\(\Rightarrow\left(x+1\right)\left[\left(x+1\right)\left(x+2\right)-\left(x-1\right)^2\right]=3x+6\)
\(\Rightarrow\left(x+1\right)\left[x^2+3x+2-x^2+2x-1\right]=3x+6\)
\(\Rightarrow\left(x+1\right)\left[5x+1\right]=3x+6\)
\(\Rightarrow5x^2+6x+1-3x-6=0\)
\(\Rightarrow5x^2+3x-5=0\)
\(\Rightarrow x=0,745\left(TM\right)\)
a)Ta có:\(1-2x=\frac{-7x-11}{5}\)
\(\Rightarrow\frac{5-10x}{5}=\frac{-7x-11}{5}\)
\(\Rightarrow5-10x=-7x-11\)
\(\Rightarrow5-10x+7x+11=0\)
\(\Rightarrow16-3x=0\)
\(\Rightarrow x=\frac{16}{3}\)
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2
ĐKXĐ : \(x+2\ne0\Leftrightarrow x\ne-2\)
ĐKXD của phương trình là mẫu khác 0
\(\hept{\begin{cases}x+2\ne0\\2+x\ne0\end{cases}\Leftrightarrow x\ne-2}\)