Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: ĐKXĐ: 1-x>=0
=>x<=1
b: ĐKXĐ: 2/x>=0
=>x>0
c: ĐKXĐ: 4/x+1>=0
=>x+1>0
=>x>-1
d: ĐKXĐ: x^2+2>=0
=>x thuộc R
Câu 2:
a: \(=\left|-\sqrt{2-1}\right|=\sqrt{1}=1\)
b: \(=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
\(a,\)\(\frac{1}{1-\sqrt{x^2-3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x^2-3\ge0\\x^2-3\ne1\end{cases}}\).
\(x^2-3\ne1\)\(\Rightarrow x^2\ne4\)\(\Rightarrow x\ne\pm2\)
\(x^2-3\ge0\)\(\Rightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\ge0\)
Chia trường hợp ra làm nốt nhé
....
\(b,\)\(\frac{x-1}{2-\sqrt{3x+1}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}3x+1\ge0\\\sqrt{3x+1}\ne2\end{cases}}\)
\(3x+1\ge0\)\(\Rightarrow3x\ge-1\)
\(\Rightarrow x\ge\frac{-1}{3}\)
\(\sqrt{3x+1}\ne2\)\(\Rightarrow|3x+1|\ne4\)\(\Rightarrow\hept{\begin{cases}3x-1\ne4\\3x-1\ne-4\end{cases}\Rightarrow\hept{\begin{cases}3x\ne5\\3x\ne-3\end{cases}\Rightarrow}\hept{\begin{cases}x\ne\frac{5}{3}\\x\ne-1\end{cases}}}\)
\(\Rightarrow x\ge-\frac{1}{3}\)và \(x\ne\frac{5}{3}\)
a)
\(\frac{1}{2-\sqrt{x}}\) được xác định khi và chỉ khi 2-\(\sqrt{x}\)>0
<=> 2>\(\sqrt{x}\)
<=> \(\sqrt{4}>\sqrt{x}\)
\(\Leftrightarrow4>x\)
b)
\(\sqrt{-\frac{5}{x-4}}\) được xác định khi và chỉ khi x-4>0
<=> x>4
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
\(b,\sqrt{\frac{2x-1}{x+3}}\)
\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)
Và \(\frac{2x-1}{x+3}\ge0\)
Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)
Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Với \(x=3\)( thỏa mãn ĐKXĐ ) ta có \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)
c) A ở đâu ???? '-'
\(a,\)\(\sqrt{\frac{1}{\left(x-3\right)^2}}\)
\(đk:\)\(\frac{1}{\left(x-3\right)^3}\ne0\)\(\Rightarrow\left(x-3\right)^3\ne0\)\(\Leftrightarrow x\ne3\)
Và \(\frac{1}{\left(x-3\right)}>0\Rightarrow x-3>0\)\(\Rightarrow x>3\)
Vậy để căn thức xác định thì x > 3
\(\sqrt{8x-x^2-15}\)
\(=\sqrt{-\left(x^2-8x+15\right)}\)
\(=\sqrt{-\left(x^2-8x+16-1\right)}\)
\(=\sqrt{-\left[\left(x^2-8x+16\right)-1\right]}\)
\(=\sqrt{-\left(x-4\right)^2+1}\)
\(đk:\)\(-\left(x-4\right)^2+1\ge0\)
\(\Rightarrow\left(x-4\right)^2\le1\)
\(\Rightarrow\orbr{\begin{cases}\left(x-4\right)^2=1\\\left(x-4\right)^2=0\end{cases}}\)
\(\left(x-4\right)^2=1\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
\(\left(x-4\right)^2=0\Rightarrow x=4\)
Vậy căn thức xác định \(\Leftrightarrow x=\left\{3;4;5\right\}\)
ĐKXĐ: \(x^2+1\ge1\Leftrightarrow x\ge0\)
luôn đúng với mọi x