Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)
1: ĐKXĐ: \(x\in R\)
2:
a: \(=x\sqrt{3}\)
c: \(=-2x-5x=-7x\)
\(b,\)\(\sqrt{\frac{2}{x^2}}\)
Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ
\(\Rightarrow x^2\ne0\)
\(\Rightarrow x\ne0\)
a) \(\sqrt{\frac{-5}{x^2+6}}\)
Để biểu thức có nghĩa thì \(x^2+6< 0\)
Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)
Vậy biểu thức này không xác định
a) \(\sqrt{x+3}+\sqrt{x^2+9}\)
Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)
Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định
\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)
Vậy \(ĐKXĐ:x\ge-3\)
b) \(\sqrt{\frac{x-1}{x+2}}\)
Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu
\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)
\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)
Vậy \(ĐKXĐ:x>1;x< -2\)