K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2015

\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)

\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)

tick cho mình nha

1. Cho biểu thức A= \(\sqrt{4-2x}\)a) Tìm điều kiện của x để biểu thức có nghĩa.b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)a) Tìm điều kiện của X để biểu thức P xác định..b) Tính giá trị của biểu thức khi x=4, x=100c) Tìm giá trị của x để P=1, P=7d) Tìm các số...
Đọc tiếp

1. Cho biểu thức A= \(\sqrt{4-2x}\)

a) Tìm điều kiện của x để biểu thức có nghĩa.

b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.

c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?

2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)

a) Tìm điều kiện của X để biểu thức P xác định..

b) Tính giá trị của biểu thức khi x=4, x=100

c) Tìm giá trị của x để P=1, P=7

d) Tìm các số nguyên x để giá trị của P cũng là một số nguyên.

3. Cho biểu thức \(\frac{2\sqrt{x}+9}{\sqrt{x}+1}\)

a) Tìm điều kiện xác định của x để biểu thức Q được xác định.

b) Tính giá trị của biểu thức khi x=0,x=1,x=16.

c) Tìm giá trị của x để Q=1,Q=10.

d) Tìm các số nguyên x để giá trị của Q cũng là một số nguyên.

Giải hộ với ạ! Gấp lắm T.T

4
2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

11 tháng 8 2020

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4

Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)

b) Với x \(\ge\)0 và x \(\ne\)4, ta có:

P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)

<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)

<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)

<=> \(\frac{-8}{\sqrt{x}-2}>0\)

Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)

mà x \(\ge0\) => 0 \(\le\)\(< \)4

c)Với x \(\ge\)0 và x \(\ne\)4

Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)

<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)

Lập bảng: 

\(\sqrt{x}-2\)      -2 -1 1 2 4 8
   x    0  1 9 16 36 100

Vậy ....

30 tháng 7 2020

Đk \(x\ge0\)\(x\ne\pm4\)

\(M=\frac{x+2\sqrt{2}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{x-4}{\sqrt{4x}}=\frac{2x\left(x-4\right)}{2\sqrt{2}\left(x-4\right)}=\frac{\sqrt{2}x}{2}\)

c) Để \(M>3\Leftrightarrow\frac{\sqrt{2}x}{2}>3\Leftrightarrow\frac{\sqrt{2}x-6}{2}>0\Leftrightarrow\sqrt{2}x>6\Leftrightarrow x>\frac{6}{\sqrt{2}}\)