Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Để biểu thức \(\dfrac{\sqrt{x+2}}{\sqrt{x-5}}\) có nghĩa thì \(\left\{{}\begin{matrix}x+2\ge0\\x-5>0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-2\\x>5\end{matrix}\right.\)\(\Leftrightarrow x>5\)
2) Để biểu thức \(\sqrt{\dfrac{3x}{2}}\) có nghĩa thì \(\dfrac{3x}{2}\ge0\Leftrightarrow x\ge0\)
a: ĐKXĐ: \(\dfrac{1}{2-x}>=0\)
=>2-x>0
hay x<2
b: ĐKXĐ: \(\dfrac{3}{x^2-1}>=0\)
=>(x-1)(x+1)>0
=>x>1 hoặc x<-1
c: ĐKXĐ: \(x\in R\)
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
a/ đkxđ: \(\left\{{}\begin{matrix}x+1\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne0\end{matrix}\right.\)
b/ đkxđ: \(\dfrac{1}{1-x}>0\Leftrightarrow1-x>0\Leftrightarrow x< 1\)
( vì 1 - x ≠ 0 mà 1 > 0 nên mk cho cả bt > 0 nhé )
c/ đkxđ: \(\dfrac{1}{1-x^2}\ge0\) và 1 - x2 ≠ 0
mà 1 > 0
=> 1 - x2 > 0 \(\Leftrightarrow\left(1-x\right)\left(1+x\right)>0\)
\(\Leftrightarrow-1< x< 1\)
d/ đkxđ: \(\dfrac{2x-4}{1+x^2}\ge0\) mà 1 + x2 > 0 ∀x
=> 2x - 4 ≥ 0
<=> 2x ≥ 4
<=> x ≥ 2
vậy...............
a: ĐKXĐ: x>=0
b: ĐKXĐ: x-1>0 và -(x2-x-6)>=0
=>x>1 và (x-3)(x+2)<=0
=>x>1 và -2<=x<=3
=>1<x<=3
a, Với \(x\ge0;x\ne\frac{16}{9};4\)
\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)
b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)
\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)
a: \(P=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
c: Để \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) là số nguyên thì \(\sqrt{x}+1-2⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;2\right\}\)
=>x=0
\(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\\ =2\sqrt{5}+\left|1-\sqrt{5}\right|\\ =2\sqrt{5}+\sqrt{5}-1\\ =3\sqrt{5}-1\)
\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}2\sqrt{3}\\ =\dfrac{1}{\sqrt{3}+1}+\dfrac{2\sqrt{3}}{\sqrt{3}-1}\\ =\dfrac{\sqrt{3}-1+2\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}^2-1^2}\\ =\dfrac{\sqrt{3}-1+6+2\sqrt{3}}{2}\\ =\dfrac{3\sqrt{3}+5}{2}\)
Bài 2:
a: ĐKXĐ: 1/x+1>=0
=>x+1>0
=>x>-1
B: ĐKXĐ: (x+1)(x-1)>=0
=>x>=1 hoặc x<=-1
`sqrt(x-5)` có nghĩa khi:
`x-5 ≥0`
`=> x ≥5`
Vậy `x≥5` thì `sqrt(x-5` có nghĩa
____________
`1/(sqrt(3x-2))` có nghĩa khi
`1/(sqrt(3x-2)) ≥0`
`⇒ 3x-2≥0`
` ⇒3x≥2`
` ⇒x≥2/3`
Vậy `x ≥2/3` thì `1/(sqrt(3x-2))` có nghĩa
Nếu x = 2/3 thì mẫu bằng 0 vậy biểu thức vẫn không có nghĩa thế bài làm vậy là đúng à