K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

a, m2x - 1 < mx + m

⇔ (m2 - m)x < m + 1

Bất phương trình vô nghiệm khi 

\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy phương trình có nghiệm với ∀m ∈ R

b, (m2 + 9)x + 3 ≥ m - 6mx

⇔ (m2 + 6m + 9)x ≥ m + 3

Phương trình có nghiệm đúng với ∀x khi m = -3

c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12

⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12

⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12

Bất phương trình có nghiệm đúng với ∀x khi m = -1

 

 

 

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

NV
15 tháng 5 2019

Để hàm số có TXĐ là R thì \(g\left(x\right)=x^2+2\left(2m-3\right)x+m^2-5m+9\ge0\) \(\forall x\)

\(g\left(x\right)\ne4\)

\(\Delta'=\left(2m-3\right)^2-\left(m^2-5m+9\right)=3m^2-7m\le0\)

\(\Rightarrow0\le m\le\frac{7}{3}\) (1)

Xét \(g\left(x\right)=4\Leftrightarrow x^2+2\left(2m-3\right)x+m^2-5m+5=0\)

Để pt vô nghiệm

\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(m^2-5m+5\right)< 0\)

\(\Leftrightarrow3m^2-7m+4< 0\Rightarrow1< m< \frac{4}{3}\) (2)

Kết hợp (1) và (2) ta được \(1< m< \frac{4}{3}\)

16 tháng 5 2019

cảm ơn ạ

24 tháng 4 2020

a) Để y = f(x) có TXĐ: D = R

điều kiện là: \(-x^2+4\left(m+1\right)x+1-4m^2\ne0\) với mọi số thực x

<=> \(-x^2+4\left(m+1\right)x+1-4m^2=0\) vô nghiệm với mọi số thực x

<=> \(\Delta'< 0\)

<=> 4 (m+1 )2 - 4m^2 < 0

<=> 2m + 1 < 0

<=> m < -1/2

Vậy : ...

b) Để y = f(x) có TXĐ: D = R

điều kiện là:

\(\frac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\ge0\) với mọi số thực x (1)

Lại có: \(-4x^2+5x-2< 0\) với mọi số thực x ( Tự chứng minh )

Do đó: (1) <=> \(-x^2+4\left(m+1\right)x+1-4m^2\le0\) với mọi số thực x

<=> \(\Delta'\le0\)

<=> \(m\le-\frac{1}{2}\)

Vậy: ...

5 tháng 4 2017

a) \(x^2-2x+m^2+m+3=0\)
    Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
                                                        \(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
  DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.

b)

(1) a khác 0: \(m^2+m+3>0\forall m\)

(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)

\(=16m^4+4m^3+13m^2-8m+4>0\) 

(3) \(\dfrac{c}{a}>0\) => m > 0

(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý

Kết luận không có m thỏa mãn đk đầu bài

 

 

 

 

 

22 tháng 6 2019

Lần sau em đăng trong link: h.vn để đc các bạn giúp đỡ nhé!

1. ĐK x >1

pt  \(\Leftrightarrow\frac{1}{\sqrt{x}-\sqrt{x-1}}\left(m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}\right)=1\)

\(\Leftrightarrow m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}=\sqrt{x}-\sqrt{x-1}\)

\(\Leftrightarrow m\sqrt{x\left(x-1\right)}+1-16\sqrt[4]{x^3\left(x-1\right)}=\sqrt{x\left(x-1\right)}-x+1\)

\(\Leftrightarrow\left(m-1\right)\sqrt{x\left(x-1\right)}-16\sqrt[4]{x^3\left(x-1\right)}+x=0\)

\(\Leftrightarrow\left(m-1\right)\sqrt{\frac{x-1}{x}}-16\sqrt[4]{\frac{x-1}{x}}+1=0\)

Đặt rồi đưa về phương trình bậc 2: \(\left(m-1\right)t^2-16t+1=0\) 

2. ĐK:...

  \(\sqrt{x-4-2\sqrt{x-4}+1}+\sqrt{x-4-2.\sqrt{x-4}.3+9}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}-1\right|+\left|\sqrt{x-4}-3\right|=m\)Tìm m để pt có đúng 2 nghiệm. Tự làm nhé!

\(3.\) ĐK:...

Đặt: \(\left(x^2-3x-4\right)=a\)

\(\sqrt{x+7}=b\)

Ta có: \(ab-m\left(a-b\right)-m^2=0\Leftrightarrow m^2+m\left(a-b\right)-ab=0\)

\(\Delta=\left(a-b\right)^2+4ab=\left(a+b\right)^2\)

pt có 2 nghiệm : \(\orbr{\begin{cases}m=\frac{b-a-\left(a+b\right)}{2}=-a\\m=\frac{b-a+\left(a+b\right)}{2}=b\end{cases}}\)

Khi đó: \(\orbr{\begin{cases}m=-\left(x^2-3x-4\right)\\m=\sqrt{x+7}\end{cases}}\)

pt <=> \(\left(m+x^2-3x-4\right)\left(m-\sqrt{x+7}\right)=0\)Tìm m để pt có nhiều nghiệm nhất .