Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(m+1\right)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(m+1\right)x+m}-1\le0\)
\(\Leftrightarrow\frac{x^2+2mx+3m+4}{mx^2+2\left(m+1\right)x+m}\le0\)
Để tập nghiệm của BPT đã cho là R
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2mx+3m+4\ge0\\mx^2+2\left(m+1\right)x+m< 0\end{matrix}\right.\) \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=m^2-3m-4\le0\\m< 0\\\Delta'_2=\left(m+1\right)^2-m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le m\le4\\m< 0\\2m+1< 0\end{matrix}\right.\) \(\Rightarrow-1\le m< -\frac{1}{2}\)
Chắc đề đúng là \(\left(m-1\right)x^2+2\left(m-1\right)x-m\le0\)
Để BPT đã cho có tập nghiệm \(S=\left[a;b\right]\) hữu hạn thì:
\(\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m-1\right)^2+4m\left(m-1\right)>0\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó a; b sẽ là nghiệm của pt bậc 2
\(\Rightarrow\left\{{}\begin{matrix}a+b=-2\\ab=\frac{m}{1-m}\end{matrix}\right.\)
\(a^2+b^2+ab=6\)
\(\Leftrightarrow\left(a+b\right)^2-ab-6=0\)
\(\Leftrightarrow\frac{m}{m-1}-2=0\Rightarrow m=2\)
Để BPT có nghiệm \(\Leftrightarrow\Delta>0\)
\(\Rightarrow\left(m+2\right)^2-4\left(3m^2+1\right)>0\)
\(\Leftrightarrow-11m^2+4m>0\Leftrightarrow0< m< \frac{4}{11}\)
\(x\left(x-m^2-1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x\ge m^2+1\end{matrix}\right.\)
Để S và tập (5;10) có phần tử chung
\(\Leftrightarrow m^2+1< 10\)
\(\Rightarrow-3< m< 3\)