Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A =35+77+6+n ,với n thuộc stn Tìm điều kiện của N để a)A chia hết cho 7 b)A không chia hết cho 7
Vì 35 chia hết cho 7
77 chia hết cho 7
6 không chia hết cho 7
Để A không chia hết cho 7 thì n phải chia hết cho 7
=> n thuộc { 7 ; 14 ; 28 ; 42 ; ... }
\(n+3⋮n\cdot n-7\)
\(\Rightarrow n+3⋮n^2-7\)
\(\Rightarrow(n+3)(n+3)⋮n^2-7\)
\(\Rightarrow n^2+9⋮n^2-7\)
\(\Rightarrow n^2-7-2⋮n^2-7\)
Mà n2 - 7 chia hết cho n2 - 7
=> \(n^2-7\inƯ(2)\)
\(\Rightarrow n^2-7\in\left\{\pm1;\pm2\right\}\)
Lập bảng :
n2 - 7 | 1 | -1 | 2 | -2 |
n | \(\hept{\begin{cases}-\sqrt{8}\\\sqrt{8}\end{cases}}\)\((\)loại\()\) | \(\hept{\begin{cases}-\sqrt{6}\\\sqrt{6}\end{cases}}\)\((\)loại\()\) | \(\left\{3;-3\right\}\)\((\)chọn\()\) | \(\hept{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)\((\)loại\()\) |
Vậy \(n\in\left\{3;-3\right\}\)
n.n+2 \(⋮\)n+1
=>\(n^2\)+2\(⋮\)n+1
=>\(n^2\)+2-(n+1)\(⋮\)n+1
=>\(n^2\)+2-n(n+1)\(⋮\)n+1
=>\(n^2\)+2-\(n^2\)-n\(⋮\)n+1
=>2-n\(⋮\)n+1
=>2-n+n+1\(⋮\)n+1
=>3\(⋮\)n+1
=>n+1\(\in\)Ư(3)={\(\mp\)1;\(\mp\)3}
=>n\(\in\){0;-2;2;-4}
Vậy n\(\in\){0;2;-2;-4} thì n.n+2 \(⋮\)n+1
vì n.n+2chia hết cho n+1
ta có:
n.n+2=n^2 +2 =n.(n+1)-n +2=n.(n+1)-(n+1)+1 chia hết cho n+1
mà n.(n+1)-(n+1)chia hết cho n+1
=> 1chia hết cho n+1
=> n+0
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
a) Vì 5n + 7 chia hết cho n
\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)
Vậy \(n\in\left\{\pm1;\pm7\right\}\)
b) Vì n + 9 chia hết cho n +4
\(\Rightarrow\left(n+4\right)+5⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(\Rightarrow n+4\inƯ\left(5\right)\)
\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)
Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)
a) x + (-115) = -126
x - 115 = -126
x = -115 + (-126)
x = -115 - 126
x = -241
b) -7 + (-8) + (-x) = 35
-7 - 8 - x = 35
-15 - x = 35
x = 35 -15
x = 20
c) x - (-37) = 54
x + 37 = 54
x = 54 - 37
x = 17
d) lx + 2l = 0
x + 2 = 0
x = 0 - 2
x = -2
e) lx - 5l = l-7l
x - 5 = 7
x = 7 + 5
x = 12
f) lxl = 15 - l-6l
x = 15 - 6
x = 9
g) lx - 3l = l5l + l-7l
x - 3 = 5 + 7
x - 3 = 12
x = 12 + 3
x = 15