Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để là hàm số bậc nhất:\(\frac{1}{\sqrt{m-1}}-1\ne0\) (đK: m>1)
\(\Leftrightarrow\sqrt{m-1}\ne1\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)
Vậy m>1 và m khác 2
Thông báo thay trang thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11
Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :
Copy cái này hoặc gõ :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
:))
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
1.
a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)
b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)
Theo de bai ta co;\(x_1-x_2=17\)
Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)
\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow16m^2+33=289\)
\(\Leftrightarrow m=4\)
2.
a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)
TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)
TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)
Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)
Ta co:\(x^2_1+x^2_2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)
\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)
\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)
\(\Rightarrow7m^2-11m-6=0\)
\(\Delta_m=121+168=289>0\)
\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\)
TH2;Tuong tu
Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)
Sửa đề (d) y=2(m-1)x+m^2+2m
a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)
Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)
=>\(3=2\left(m-1\right).1+m^2+2m\)
<=>\(m^2+2m+2m-2-3=0\)
<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)
b, Phương trình hoành độ giao điểm của (P) và (d) :
\(x^2=2\left(m-1\right)x+m^2+2m\)
<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)
Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B
c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)
\(x_1^2+x_2^2+6x_1x_2>2017\)
<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)
<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)
<=>\(4m^2-8m+4-4m^2-8m-2017>0\)
<=>\(-16m-2013>0\)
<=>\(m< \frac{-2013}{16}\)
Lời giải:
1. Để đths đi qua $A(-2;-2)$ thì:
$y_A=(m-2)x_A^2$
$\Leftrightarrow -2=(m-2)(-2)^2$
$\Leftrightarrow m-2=\frac{-1}{2}$
$\Leftrightarrow m=\frac{3}{2}$
2.
PT hoành độ giao điểm của đths câu 1 với $y=-1$ là:
$(\frac{3}{2}-2)x^2=-1$
$\Leftrightarrow \frac{-1}{2}x^2=-1$
$\Leftrightarrow x^2=2$
$\Leftrightarrow x=\pm \sqrt{2}$
Vậy 2 tọa độ giao điểm là $M(\sqrt{2}; -1); (-\sqrt{2}; -1)$
Đáp án D