K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

a, \(\left\{{}\begin{matrix}2x-1\ne0\\\frac{x^2}{2x-1}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\2x-1>0\end{matrix}\right.\Leftrightarrow x>\frac{1}{2}\)

b, \(\frac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{5^3.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-6\right)^3}.\sqrt[3]{\left(\frac{1}{3}\right)^3}\)

\(=\frac{5\sqrt[3]{5}}{\sqrt[3]{5}}+6.\frac{1}{3}=5+2=7\)

6 tháng 7 2021

1.a) Để căn thức có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{2x-1}\ge0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)

Vậy...

b, \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}=\sqrt[3]{\dfrac{625}{5}}-\sqrt[3]{-\dfrac{216}{27}}=\sqrt[3]{125}-\sqrt[3]{-8}=5-\left(-2\right)=7\)

a) Để căn thức có nghĩa thì 2x-1>0

\(\Leftrightarrow2x>1\)

hay \(x>\dfrac{1}{2}\)

b) Ta có: \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}\cdot\sqrt[3]{\dfrac{1}{27}}\)

\(=5-\left(-6\right)\cdot\dfrac{1}{3}\)

\(=5+6\cdot\dfrac{1}{3}=5+2=7\)

a, để ý a có nghĩa thì 2x+1 \(\ge\)0 vì (\(x^2\) + 1\(\ge\)1, \(\forall\) x)\(\Rightarrow\)

\(\Rightarrow\) \(x\text{​​}\text{​​}\ge\)\(\frac{-1}{2}\)

4 tháng 7 2021

a)ĐK:\(-\dfrac{5}{2x+1}\ge0\) và \(2x+1\ne0\)

\(\Leftrightarrow2x+1>0\) \(\Leftrightarrow x>-\dfrac{1}{2}\)

Vậy \(x< -\dfrac{1}{2}\) thì căn thức có nghĩa

b)\(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}=\sqrt[3]{4^3}+\sqrt[3]{-3^3}-\sqrt[3]{-8}\)

\(=4+\left(-3\right)-\left(-2\right)\)

\(=3\)

4 tháng 7 2021

À không, ý a \(\Leftrightarrow2x+1< 0\Leftrightarrow x< -\dfrac{1}{2}\)

5 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)

\(x^2+1\ge1>0\)

\(\Rightarrow2x+1\ge0\)

\(\Rightarrow x\ge-\dfrac{1}{2}\)

Vậy ...

b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)

\(=-3+4-\left(-4\right)=-3+4+4=5\)

5 tháng 7 2021

Bài 2 :

\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)

\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)

\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)

\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)

\(=3\)

23 tháng 10 2020

1) Để căn thức đã cho có nghĩa \(\Leftrightarrow2x+1< 0\) \(\Leftrightarrow x< -\frac{1}{2}\)

2)

a) \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{2\left(-5\right)^2}\) \(=3-\sqrt{2}+5\sqrt{2}=4+4\sqrt{2}\)

b) \(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\frac{2}{\sqrt{3}-1}=\sqrt{3}-1-\sqrt{3}=-1\)

c) \(\frac{\sqrt{8}-2}{\sqrt{2}-1}+\frac{2}{\sqrt{3}-1}-\frac{3}{\sqrt{3}}\) \(=2+1+\sqrt{3}-\sqrt{3}=3\)

16 tháng 9 2021

a. ĐKXĐ: x < 2

30 tháng 3 2020
https://i.imgur.com/iX7y3qX.jpg
30 tháng 3 2020
https://i.imgur.com/GMDpx0f.jpg
2 tháng 10 2021

a) ĐKXĐ: \(\dfrac{2x+1}{x^2+1}\ge0\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)

b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}=-3+4-\sqrt[3]{-64}=1+4=5\)

a: ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

b: Ta có: \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)

\(=-3+4-\left(-4\right)\)

=-3+4+4

=5