Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm xác định trên R khi với mọi x ta có:
\(sin^6x+cos^6x+m.sinx.cosx>0\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x+\dfrac{m}{2}sin2x>0\)
\(\Leftrightarrow3sin^22x-2m.sin2x-4< 0\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow3t^2-2mt-4< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.f\left(-1\right)< 0\\3.f\left(1\right)< 0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\-2m-1< 0\end{matrix}\right.\)
\(\Rightarrow-\dfrac{1}{2}< m< \dfrac{1}{2}\)
ĐKXĐ: 2m-3sinx>=0
=>3sin x<=2m
=>sin x<=2m/3
mà -1<=sin x<=1
nên -1<=2m/3<=1
=>-3<=2m<=3
=>-3/2<=m<=3/2
để hàm số xác định với mọi x thuộc R thì
\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)
mà \(2cos^2x-cosx+4>0\) nên :
\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)
vậy điều kiện của m là : \(m\ge\frac{3}{7}\)
Cộng đồng học tập online | Học trực tuyến
Lần sau có bài em đăng trong link này để đc các bạn giúp đỡ nhé!
+)\(y=\frac{1}{\sqrt{1+\cos4x}}\)
ĐKXĐ: \(\cos4x+1>0\Leftrightarrow\cos4x>-1\Leftrightarrow\cos4x\ne-1\)
\(\Leftrightarrow4x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\), k thuộc Z
TXĐ: \(ℝ\backslash\left\{\frac{\pi}{4}+\frac{k\pi}{2}\right\}\), k thuộc Z
+) \(y=\sqrt{\tan x-\sqrt{3}}\)
ĐKXĐ: \(\hept{\begin{cases}\tan x-\sqrt{3}\ge0\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}\tan x\ge\tan\frac{\pi}{3}\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow}\frac{\pi}{3}+k\pi\le x< \frac{\pi}{2}+k\pi}\)
TXĐ:...
ĐK: sin^2 (2x) ≥ 0 <=> sin 2x ≥ 0 <=> x ≥ kπ/2
=> HSXĐ <=> 1 + cot^2 (2x) ≥ 0
<=> cot^2 (2x) ≥ -1
<=> cot 2x = 0
<=> x = π/2 + k2π
a, Vì \(-5sinx\ge-5\Rightarrow m-5sinx\ge0\forall x\Leftrightarrow m\ge5\)
b, Vì \(cos2x\ge-1\Rightarrow2m+cos2x\ge0\forall x\Leftrightarrow2m\ge1\Leftrightarrow m\ge\dfrac{1}{2}\)
c, TH1: \(m=0\) thỏa mãn yêu cầu bài toán
TH2: \(m>0\)
Khi đó: \(-m+1\le mcosx+1\le m+1\)
Yêu cầu bài toán thỏa mãn khi \(-m+1>0\Leftrightarrow m< 1\)
\(\Rightarrow0< m< 1\)
TH3: \(m< 0\)
Khi đó: \(m+1\le mcosx+1\le-m+1\)
Yêu cầu bài toán thỏa mãn khi \(m+1>0\Leftrightarrow m>-1\)
\(\Rightarrow-1< m< 0\)
Vậy \(m\in\left(-1;1\right)\)
Hàm xác định trên R khi với mọi x ta có:
\(2sin3x+2cos3x-m>0\)
\(\Leftrightarrow sin3x+cos3x>\dfrac{m}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(3x+\dfrac{\pi}{4}\right)>\dfrac{m}{2}\)
\(\Rightarrow\dfrac{m}{2\sqrt{2}}< \min\limits_Rsin\left(3x+\dfrac{\pi}{4}\right)=-1\)
\(\Rightarrow m< -2\sqrt{2}\)