Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có hai tam giác ABC và tam giác NPM có B C = P M , B ^ = P ^ = 90 0 mà BC, PM là hai cạnh góc vuông của tam giác ABC và NPM nên để hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông thì ta cần thêm điều kiện CA = MN
Đáp án C
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)
Tính cạnh góc vuông của một tam giác vuông biết cạnh huyền bằng 13cm, cạnh góc vuông kia bằng 12cm ?
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt tên cho \(\Delta\) này là \(\Delta\)ABC, ta có:
AB & BC là cạnh góc vuông.
AC là cạnh huyền.
Áp dụng định lý py-ta-go vào \(\Delta\)ABC, ta có:
AC2 = AB2 + BC2
132 = 122 + BC2
169 = 144 + BC2
BC2 = 169 - 144 = 25
BC = \(\sqrt{25}\) = 5cm.
Vậy cạnh BC = 5cm hay cạnh góc vuông còn lại của \(\Delta\) = 5cm.
13 12 A B C
Giả sử ∆ABC có ˆA=90∘, BC = 13cm, AC = 12cm
Theo định lý Pytago, ta có: BC2=AB2+AC2
Suy ra: AB2=BC2−AC2=132−122=252
Vậy AB = 5 (cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi độ dài cạnh góc vuông của tam giác đó là a
Theo định lí Pitago :
a2 + a2 = 492
=> 2a2 = 2401
=> a2 = 2401 : 2 = 1200.5
=> a = \(\frac{49\sqrt{2}}{2}\)
ta có: tam giác ABC vuông cân tại A
=> AB = AC ( định lí) => AB2 = AC2
Xét tam giác ABC vuông tại A
=> AB2 + AC2 = 492 ( py-ta-go)
AB2 + AB2 = 492
2.AB2 = 492
AB2 = 1200,5
\(\Rightarrow AB=\sqrt{1200,5}cm\)
=> \(AB=AC=\sqrt{1200,5}cm\)
Để 1 cạnh góc vuông bằng 1 nửa cạnh huyền
<=> Góc đối diện với cạnh góc vuông đó=30 độ