\(\sqrt{x^2-9}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

Giúp mình với

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

b) ĐKXĐ: \(x\in R\)

c) ĐKXĐ: \(x\in R\)

Bài 1:

a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)

b) Ta có: \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

\(\left(x+1\right)^2\ge0\forall x\)

nên \(x^2+2x+1\ge0\forall x\)

Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x

c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)

\(\Leftrightarrow x\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)

Bài 3:

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\sqrt{\left(x-1\right)^2}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2020

Lời giải:

Để các căn thức có nghĩa thì biểu thức trong dấu căn phải luôn không âm.

a) Biểu thức có nghĩa $\Leftrightarrow 9-x^2\geq 0\Leftrightarrow (3-x)(3+x)\geq 0\Leftrightarrow 3\geq x\geq -3$

b) Biểu thức có nghĩa $\Leftrightarrow x^2-25\geq 0\Leftrightarrow (x-5)(x+5)\geq 0\Leftrightarrow x\geq 5$ hoặc $x\leq -5$

c) Biểu thức có nghĩa $\Leftrightarrow x^2-5\geq 0\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$

$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$

d) Biểu thức có nghĩa $\Leftrightarrow x^2+3x\geq 0\Leftrightarrow x(x+3)\geq 0$

$\Leftrightarrow x\geq 0$ hoặc $x\leq -3$

17 tháng 7 2019

\(\sqrt {\dfrac{2}{{9 - x}}}\) có nghĩa khi \(\left\{ \begin{array}{l} \dfrac{2}{{9 - x}} \ge 0\\ 9 - x \ne 0 \end{array} \right. \Leftrightarrow 9 - x > 0 \Leftrightarrow - x > - 9 \Leftrightarrow x < 9\)

\(\sqrt {{x^2} + 2x + 1} \) có nghĩa khi: \({x^2} + 2x + 1 = {\left( {x + 1} \right)^2} > 0\forall x \in R\)

\(\sqrt{9-x^2}\) có nghĩa khi: \(9 - {x^2} \ge 0 \Leftrightarrow - {x^2} \ge - 9 \Leftrightarrow {x^2} \le 9 \Leftrightarrow \left| x \right| \le 9\)

\(\Leftrightarrow x\ge3\) hoặc \(x\ge-3\)

\(\sqrt {\dfrac{1}{{{x^2} - 4}}} \) có nghĩa khi: \(\left\{ \begin{array}{l} \dfrac{1}{{{x^2} - 4}} \ge 0\\ {x^2} - 4 \ne 0 \end{array} \right. \Leftrightarrow {x^2} - 4 > 0 \Leftrightarrow \left| x \right| > 4\)

\(\Leftrightarrow x>2\) hoặc \(x>-2\)

2 tháng 1 2019

1/ \(x\ge\dfrac{1}{3}\)

2/ \(\forall x\in R\)

3/ \(x\le\dfrac{5}{2}\)

4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)

5/ \(x>2\)

6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)

7/ \(x\ge\dfrac{1}{2}\)

8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)

9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)

10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)

*Căn thức luôn không âm & mẫu chứa căn luôn dương

2 tháng 1 2019

1) Để biểu thức \(\sqrt{3x-1}\)​ có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)

2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)

Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa

3) Để biểu thức \(\sqrt{5-2x}\)​ có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)

4) Để biểu thức ​\(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)

5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\)​ có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)

6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)

Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa

7) Để biểu thức \(\sqrt{2x-1}\)​ có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)

8) Để biểu thức ​\(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\)​ có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)

10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\)​ có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)

3 tháng 9 2019

tìm x để căn thức sau có nghĩa

a) \(\sqrt{2x-1}\) có nghĩa khi 2x - 1 \(\ge\) 0 <=> 2x \(\ge\) 1 <=> x \(\ge\) \(\frac{1}{2}\)

Vậy: .......

b) \(\sqrt{4-x}\) có nghĩa khi 4 - x \(\ge\) 0

<=> -x \(\ge\) -4 <=> x \(\le\) 1

Vậy...............

c) \(\sqrt{\frac{3x+1}{2}}\) có nghĩa khi \(\frac{3x+1}{2}\ge0\)

<=> 3x + 1 \(\ge\) 0

<=> x \(\ge\) \(\frac{-1}{3}\)

Vậy.............

d) \(\sqrt{x^2+1}\) có nghĩa khi x2 + 1 \(\ge\) 0

Ta có: x2 \(\ge\) 0 và 1 > 0

=> x2 + 1 > 0 vs mọi x \(\in\) R

Vậy: \(\sqrt{x^2+1}\) có nghĩa vs mọi x \(\in\) R

e) \(\sqrt{x-2}+\frac{1}{x^2-4}\) có nghĩa khi

x - 2 \(\ge\) 0 và x2 - 4 \(\ne\) 0

<=> x \(\ge\) 2 và x \(\ne\) 2 ; -2

<=> x > 2

Vậy..............

f) \(\sqrt{2x-1}+\sqrt{3-x}\) có nghĩa khi 2x - 1\(\ge\) 0 và 3 - x \(\ge\) 0

<=> x \(\ge\) \(\frac{1}{2}\) và x \(\le\) 3

<=> \(\frac{1}{2}\le x\le3\)

Vậy..............

g) \(\sqrt{\frac{3}{x-1}}\) có nghĩa khi x - 1 > 0 <=> x > 1

Vậy...........

h) \(\sqrt{x^2-6x+9}\) có nghĩa khi x2 - 6x + 9 \(\ge\) 0

<=> (x - 3)2 \(\ge\) 0

Mà: (x - 3)2 \(\ge\) 0 vs mọi x \(\in\) R

Vậy..................

3 tháng 9 2019

cảm ơn nhé leuleu